Answer
Verified
81k+ views
Hint: Compare the Lyman series and PFund series with the help of Rydberg formula that describes wavelength. Further calculation on the wavelength will help to solve this problem.
Formula Used:
$\dfrac{1}{\lambda } = R\left( {\dfrac{1}{{{n_1}^2}} - \dfrac{1}{{{n_2}^2}}} \right)$
Where, $\lambda = $Wavelength, $R = $ Rydberg constant
Complete step by step answer:
Let’s discuss the Lyman series first; this series is a related sequence of wavelengths that describe electromagnetic energy given off by energized atoms in the ultraviolet region. When coming to the PFund series, it is a series of lines which lies in the infrared part of the spectrum of atomic hydrogen
We can solve this problem by using the Rydberg formula. That is,
$\dfrac{1}{\lambda } = R\left( {\dfrac{1}{{{n_1}^2}} - \dfrac{1}{{{n_2}^2}}} \right)$
Where, $\lambda = $ Wavelength
$R = $ Rydberg constant
In Lyman series,
Value of ${n_1} = 1$
And the value of ${n_2} = \infty $
For Lyman series, assume the value of $\lambda $ as, $\lambda = {\lambda _L}$
Applying the values to the Rydberg formula, we get,
$\dfrac{1}{{{\lambda _L}}} = R\left( {\dfrac{1}{{{1^2}}} - \dfrac{1}{{{\infty ^2}}}} \right)$
When any quantity is divided by infinity the value of the resultant is nearly zero.
$ \Rightarrow \dfrac{1}{{{\lambda _L}}} = R$………………………………………………… (Eqn. A)
In PFund series,
Value of ${n_1} = 5$
And the value of ${n_2} = \infty $
For $P$Fund series, assume the value of $\lambda $ as, $\lambda = {\lambda _P}$
Applying the values to the Rydberg formula, we get,
$\dfrac{1}{{{\lambda _P}}} = R\left( {\dfrac{1}{{{5^2}}} - \dfrac{1}{{{\infty ^2}}}} \right)$
As we discussed earlier, when any quantity is divided by infinity the value of the resultant is nearly zero.
\[ \Rightarrow \dfrac{1}{{{\lambda _P}}} = \dfrac{R}{{25}}\]………………………………………………… (Eqn. B)
Comparing Eqn. A and Eqn. B, we will get,
\[ \Rightarrow \dfrac{1}{{{\lambda _P}}} = \dfrac{1}{{25{\lambda _L}}}\]………………………………………….. (Eqn. C)
We know, $\nu = \dfrac{c}{\lambda }$
$ \Rightarrow \lambda = \dfrac{c}{\nu }$
Applying this value in the Equation C, we get,
\[ \Rightarrow \dfrac{{{\nu _P}}}{c} = \dfrac{{{\nu _L}}}{{25c}}\]
\[ \Rightarrow {\nu _P} = \dfrac{{{\nu _L}}}{{25}}\]
So the final answer is Option (B)
Note: Origin of the PFund series is in the 1930s; it is a series of absorption or emission lines of atomic hydrogen. The lines were experimentally discovered in 1924 by August Herman Pfund, and correspond to the electron jumping between the fifth and higher energy levels of the hydrogen atom.
Formula Used:
$\dfrac{1}{\lambda } = R\left( {\dfrac{1}{{{n_1}^2}} - \dfrac{1}{{{n_2}^2}}} \right)$
Where, $\lambda = $Wavelength, $R = $ Rydberg constant
Complete step by step answer:
Let’s discuss the Lyman series first; this series is a related sequence of wavelengths that describe electromagnetic energy given off by energized atoms in the ultraviolet region. When coming to the PFund series, it is a series of lines which lies in the infrared part of the spectrum of atomic hydrogen
We can solve this problem by using the Rydberg formula. That is,
$\dfrac{1}{\lambda } = R\left( {\dfrac{1}{{{n_1}^2}} - \dfrac{1}{{{n_2}^2}}} \right)$
Where, $\lambda = $ Wavelength
$R = $ Rydberg constant
In Lyman series,
Value of ${n_1} = 1$
And the value of ${n_2} = \infty $
For Lyman series, assume the value of $\lambda $ as, $\lambda = {\lambda _L}$
Applying the values to the Rydberg formula, we get,
$\dfrac{1}{{{\lambda _L}}} = R\left( {\dfrac{1}{{{1^2}}} - \dfrac{1}{{{\infty ^2}}}} \right)$
When any quantity is divided by infinity the value of the resultant is nearly zero.
$ \Rightarrow \dfrac{1}{{{\lambda _L}}} = R$………………………………………………… (Eqn. A)
In PFund series,
Value of ${n_1} = 5$
And the value of ${n_2} = \infty $
For $P$Fund series, assume the value of $\lambda $ as, $\lambda = {\lambda _P}$
Applying the values to the Rydberg formula, we get,
$\dfrac{1}{{{\lambda _P}}} = R\left( {\dfrac{1}{{{5^2}}} - \dfrac{1}{{{\infty ^2}}}} \right)$
As we discussed earlier, when any quantity is divided by infinity the value of the resultant is nearly zero.
\[ \Rightarrow \dfrac{1}{{{\lambda _P}}} = \dfrac{R}{{25}}\]………………………………………………… (Eqn. B)
Comparing Eqn. A and Eqn. B, we will get,
\[ \Rightarrow \dfrac{1}{{{\lambda _P}}} = \dfrac{1}{{25{\lambda _L}}}\]………………………………………….. (Eqn. C)
We know, $\nu = \dfrac{c}{\lambda }$
$ \Rightarrow \lambda = \dfrac{c}{\nu }$
Applying this value in the Equation C, we get,
\[ \Rightarrow \dfrac{{{\nu _P}}}{c} = \dfrac{{{\nu _L}}}{{25c}}\]
\[ \Rightarrow {\nu _P} = \dfrac{{{\nu _L}}}{{25}}\]
So the final answer is Option (B)
Note: Origin of the PFund series is in the 1930s; it is a series of absorption or emission lines of atomic hydrogen. The lines were experimentally discovered in 1924 by August Herman Pfund, and correspond to the electron jumping between the fifth and higher energy levels of the hydrogen atom.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
A fish is near the center of a spherical waterfilled class 12 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
The area of a circle whose centre is left hk right class 10 maths JEE_Main
A parallel plate air condenser is connected with a class 12 physics JEE_MAIN
If a wire of resistance R is stretched to double of class 12 physics JEE_Main