If the series limit frequency of the Lyman series is ${\nu _L}$, then the series limit frequency of the PFund series is?
a) $\dfrac{{{\nu _L}}}{{16}}$
b) \[\dfrac{{{\nu _L}}}{{25}}\]
c) $25{\nu _L}$
d) $16{\nu _L}$
Answer
Verified
117.9k+ views
Hint: Compare the Lyman series and PFund series with the help of Rydberg formula that describes wavelength. Further calculation on the wavelength will help to solve this problem.
Formula Used:
$\dfrac{1}{\lambda } = R\left( {\dfrac{1}{{{n_1}^2}} - \dfrac{1}{{{n_2}^2}}} \right)$
Where, $\lambda = $Wavelength, $R = $ Rydberg constant
Complete step by step answer:
Let’s discuss the Lyman series first; this series is a related sequence of wavelengths that describe electromagnetic energy given off by energized atoms in the ultraviolet region. When coming to the PFund series, it is a series of lines which lies in the infrared part of the spectrum of atomic hydrogen
We can solve this problem by using the Rydberg formula. That is,
$\dfrac{1}{\lambda } = R\left( {\dfrac{1}{{{n_1}^2}} - \dfrac{1}{{{n_2}^2}}} \right)$
Where, $\lambda = $ Wavelength
$R = $ Rydberg constant
In Lyman series,
Value of ${n_1} = 1$
And the value of ${n_2} = \infty $
For Lyman series, assume the value of $\lambda $ as, $\lambda = {\lambda _L}$
Applying the values to the Rydberg formula, we get,
$\dfrac{1}{{{\lambda _L}}} = R\left( {\dfrac{1}{{{1^2}}} - \dfrac{1}{{{\infty ^2}}}} \right)$
When any quantity is divided by infinity the value of the resultant is nearly zero.
$ \Rightarrow \dfrac{1}{{{\lambda _L}}} = R$………………………………………………… (Eqn. A)
In PFund series,
Value of ${n_1} = 5$
And the value of ${n_2} = \infty $
For $P$Fund series, assume the value of $\lambda $ as, $\lambda = {\lambda _P}$
Applying the values to the Rydberg formula, we get,
$\dfrac{1}{{{\lambda _P}}} = R\left( {\dfrac{1}{{{5^2}}} - \dfrac{1}{{{\infty ^2}}}} \right)$
As we discussed earlier, when any quantity is divided by infinity the value of the resultant is nearly zero.
\[ \Rightarrow \dfrac{1}{{{\lambda _P}}} = \dfrac{R}{{25}}\]………………………………………………… (Eqn. B)
Comparing Eqn. A and Eqn. B, we will get,
\[ \Rightarrow \dfrac{1}{{{\lambda _P}}} = \dfrac{1}{{25{\lambda _L}}}\]………………………………………….. (Eqn. C)
We know, $\nu = \dfrac{c}{\lambda }$
$ \Rightarrow \lambda = \dfrac{c}{\nu }$
Applying this value in the Equation C, we get,
\[ \Rightarrow \dfrac{{{\nu _P}}}{c} = \dfrac{{{\nu _L}}}{{25c}}\]
\[ \Rightarrow {\nu _P} = \dfrac{{{\nu _L}}}{{25}}\]
So the final answer is Option (B)
Note: Origin of the PFund series is in the 1930s; it is a series of absorption or emission lines of atomic hydrogen. The lines were experimentally discovered in 1924 by August Herman Pfund, and correspond to the electron jumping between the fifth and higher energy levels of the hydrogen atom.
Formula Used:
$\dfrac{1}{\lambda } = R\left( {\dfrac{1}{{{n_1}^2}} - \dfrac{1}{{{n_2}^2}}} \right)$
Where, $\lambda = $Wavelength, $R = $ Rydberg constant
Complete step by step answer:
Let’s discuss the Lyman series first; this series is a related sequence of wavelengths that describe electromagnetic energy given off by energized atoms in the ultraviolet region. When coming to the PFund series, it is a series of lines which lies in the infrared part of the spectrum of atomic hydrogen
We can solve this problem by using the Rydberg formula. That is,
$\dfrac{1}{\lambda } = R\left( {\dfrac{1}{{{n_1}^2}} - \dfrac{1}{{{n_2}^2}}} \right)$
Where, $\lambda = $ Wavelength
$R = $ Rydberg constant
In Lyman series,
Value of ${n_1} = 1$
And the value of ${n_2} = \infty $
For Lyman series, assume the value of $\lambda $ as, $\lambda = {\lambda _L}$
Applying the values to the Rydberg formula, we get,
$\dfrac{1}{{{\lambda _L}}} = R\left( {\dfrac{1}{{{1^2}}} - \dfrac{1}{{{\infty ^2}}}} \right)$
When any quantity is divided by infinity the value of the resultant is nearly zero.
$ \Rightarrow \dfrac{1}{{{\lambda _L}}} = R$………………………………………………… (Eqn. A)
In PFund series,
Value of ${n_1} = 5$
And the value of ${n_2} = \infty $
For $P$Fund series, assume the value of $\lambda $ as, $\lambda = {\lambda _P}$
Applying the values to the Rydberg formula, we get,
$\dfrac{1}{{{\lambda _P}}} = R\left( {\dfrac{1}{{{5^2}}} - \dfrac{1}{{{\infty ^2}}}} \right)$
As we discussed earlier, when any quantity is divided by infinity the value of the resultant is nearly zero.
\[ \Rightarrow \dfrac{1}{{{\lambda _P}}} = \dfrac{R}{{25}}\]………………………………………………… (Eqn. B)
Comparing Eqn. A and Eqn. B, we will get,
\[ \Rightarrow \dfrac{1}{{{\lambda _P}}} = \dfrac{1}{{25{\lambda _L}}}\]………………………………………….. (Eqn. C)
We know, $\nu = \dfrac{c}{\lambda }$
$ \Rightarrow \lambda = \dfrac{c}{\nu }$
Applying this value in the Equation C, we get,
\[ \Rightarrow \dfrac{{{\nu _P}}}{c} = \dfrac{{{\nu _L}}}{{25c}}\]
\[ \Rightarrow {\nu _P} = \dfrac{{{\nu _L}}}{{25}}\]
So the final answer is Option (B)
Note: Origin of the PFund series is in the 1930s; it is a series of absorption or emission lines of atomic hydrogen. The lines were experimentally discovered in 1924 by August Herman Pfund, and correspond to the electron jumping between the fifth and higher energy levels of the hydrogen atom.
Recently Updated Pages
JEE Main 2025: Application Form, Exam Dates, Eligibility, and More
A team played 40 games in a season and won 24 of them class 9 maths JEE_Main
Here are the shadows of 3 D objects when seen under class 9 maths JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
Madhuri went to a supermarket The price changes are class 9 maths JEE_Main
Trending doubts
Physics Average Value and RMS Value JEE Main 2025
Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
Explain the construction and working of a GeigerMuller class 12 physics JEE_Main
Electron Gain Enthalpy and Electron Affinity for JEE
Collision - Important Concepts and Tips for JEE
Clemmenson and Wolff Kishner Reductions for JEE
Other Pages
JEE Main Chemistry Exam Pattern 2025
JEE Advanced 2025 Revision Notes for Physics on Modern Physics
A combination of five resistors is connected to a cell class 12 physics JEE_Main
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Keys & Solutions
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
A shortcircuited coil is placed in a timevarying magnetic class 12 physics JEE_Main