
If the self-inductance of an air core inductor increases from 0.1mH to 20mH on the introduction of metal core into it. The relative permeability of the core used is
(A) 200
(B) 20
(C) 2
(D) 1
Answer
219.6k+ views
Hint: Permeability is the measure of magnetization that a material can obtain in response to the magnetic field applied on it. It is given by the symbol, ${\mu _{}}$ . Similarly relative permeability which is given by ${\mu _T}$ ,is nothing but the ratio of the permeability of any specific medium/substance to that of free space, which is given by ${\mu _0}$ .
\[{\mu _T} = \dfrac{\mu }{{{\mu _0}}}\]
Formulas used: We will be using the formula for self-inductance of a substance,
${L_0} = \dfrac{{{\mu _0}{N^2}A}}{l}$ where ${L_0}$ is the self-inductance of a material, ${\mu _0}$ is the relative permeability in air / free space, $N$ is the number of turns in the solenoid, $A$ is the area of cross-section of the solenoid, and $l$ is the length of the solenoid.
We would also be using the formula, \[{\mu _T} = \dfrac{\mu }{{{\mu _0}}}\] where \[{\mu _T}\] is relative permeability, \[\mu \] is permeability of a substance in a medium , and \[{\mu _0}\] is permeability of a substance in free space .
Complete Step by Step answer:
We know that the self induction is the induction of voltage in a current carrying wire when the current in the wire itself is changing. And mathematically this can be given by, ${L_0} = \dfrac{{{\mu _0}{N^2}A}}{l}$ .
According to our question, we can see that the self-inductance changes when a metal core is introduced into the field of a solenoid.Thus we have two different self-inductances,
${L_0} = \dfrac{{{\mu _0}{N^2}A}}{l} = 0.1mH$ and $L = \dfrac{{\mu {N^2}A}}{l} = 20mH$ . Since we know all other factors of the solenoid remain unchanged, the only factor that reflects the change in self-inductance is the permeability of the media. Thus, dividing both the inductances we get,
$\dfrac{L}{{{L_0}}} = \dfrac{{20}}{{0.1}} = \dfrac{\mu }{{{\mu _0}}}$
Thus the relative permeability of the metal core given by, \[{\mu _T} = \dfrac{\mu }{{{\mu _0}}}\] is equivalent to the ratio of the self-inductances, that is, ${\mu _T} = \dfrac{L}{{{L_0}}} = \dfrac{\mu }{{{\mu _0}}}$ .
$ \Rightarrow {\mu _T} = \dfrac{\mu }{{{\mu _0}}} = \dfrac{{20}}{{0.1}}$
$ \Rightarrow {\mu _T} = \dfrac{\mu }{{{\mu _0}}} = 20 \times 10 = 200$
Thus the relative permeability of the metallic core introduced in the solenoid is ${\mu _T} = 200$
Hence the correct answer is option A.
Note: The physical quantity permeability is measured in Henry(H). But relative permeability does not have units because it is a ratio of similar physical quantities in different media.
\[{\mu _T} = \dfrac{\mu }{{{\mu _0}}}\]
Formulas used: We will be using the formula for self-inductance of a substance,
${L_0} = \dfrac{{{\mu _0}{N^2}A}}{l}$ where ${L_0}$ is the self-inductance of a material, ${\mu _0}$ is the relative permeability in air / free space, $N$ is the number of turns in the solenoid, $A$ is the area of cross-section of the solenoid, and $l$ is the length of the solenoid.
We would also be using the formula, \[{\mu _T} = \dfrac{\mu }{{{\mu _0}}}\] where \[{\mu _T}\] is relative permeability, \[\mu \] is permeability of a substance in a medium , and \[{\mu _0}\] is permeability of a substance in free space .
Complete Step by Step answer:
We know that the self induction is the induction of voltage in a current carrying wire when the current in the wire itself is changing. And mathematically this can be given by, ${L_0} = \dfrac{{{\mu _0}{N^2}A}}{l}$ .
According to our question, we can see that the self-inductance changes when a metal core is introduced into the field of a solenoid.Thus we have two different self-inductances,
${L_0} = \dfrac{{{\mu _0}{N^2}A}}{l} = 0.1mH$ and $L = \dfrac{{\mu {N^2}A}}{l} = 20mH$ . Since we know all other factors of the solenoid remain unchanged, the only factor that reflects the change in self-inductance is the permeability of the media. Thus, dividing both the inductances we get,
$\dfrac{L}{{{L_0}}} = \dfrac{{20}}{{0.1}} = \dfrac{\mu }{{{\mu _0}}}$
Thus the relative permeability of the metal core given by, \[{\mu _T} = \dfrac{\mu }{{{\mu _0}}}\] is equivalent to the ratio of the self-inductances, that is, ${\mu _T} = \dfrac{L}{{{L_0}}} = \dfrac{\mu }{{{\mu _0}}}$ .
$ \Rightarrow {\mu _T} = \dfrac{\mu }{{{\mu _0}}} = \dfrac{{20}}{{0.1}}$
$ \Rightarrow {\mu _T} = \dfrac{\mu }{{{\mu _0}}} = 20 \times 10 = 200$
Thus the relative permeability of the metallic core introduced in the solenoid is ${\mu _T} = 200$
Hence the correct answer is option A.
Note: The physical quantity permeability is measured in Henry(H). But relative permeability does not have units because it is a ratio of similar physical quantities in different media.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction Explained: Definition, Examples & Science for Students

Analytical Method of Vector Addition Explained Simply

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

