
If the roots of the quadratic equation \[\begin{array}{*{20}{c}}
{\dfrac{{x - m}}{{mx + 1}}}& = &{\dfrac{{x + n}}{{nx + 1}}}
\end{array}\] are reciprocal to each other, then
A) \[\begin{array}{*{20}{c}}
n& = &0
\end{array}\]
B) \[\begin{array}{*{20}{c}}
m& = &n
\end{array}\]
C) \[m + n\]
D) \[m - n\]
Answer
233.1k+ views
Hint: In this question, first of all, we will convert the given equation in the general form of the quadratic equation. After converting the equation, we will determine the product of the roots of the equation. Hence, we will get a suitable answer.
Formula Used:Formula used:
1) \[\begin{array}{*{20}{c}}
{\alpha \beta }& = &{\dfrac{c}{a}}
\end{array}\]
Complete step by step solution:In this question, we have given a quadratic equation. Let us assume that the roots of the quadratic equation are \[\alpha \]and \[\beta \]respectively.
According to the condition that is given in the question, the roots of the quadratic equations are reciprocal to each other. If the one root of a quadratic equation is \[\alpha \], then the other root of the quadratic equation will be \[\dfrac{1}{\alpha }\]. Therefore, we can write the other root as,
\[\begin{array}{*{20}{c}}
\beta & = &{\dfrac{1}{\alpha }}
\end{array}\]
Now we have the equation
\[ \Rightarrow \begin{array}{*{20}{c}}
{\dfrac{{x - m}}{{mx + 1}}}& = &{\dfrac{{x + n}}{{nx + 1}}}
\end{array}\]
Now we will convert the above equation into the general form of the quadratic equation. For that purpose, first of all, we will do a cross multiplication of the above equation. Therefore, we will get
\[ \Rightarrow \begin{array}{*{20}{c}}
{\left( {x - m} \right)\left( {nx + 1} \right)}& = &{\left( {mx + 1} \right)\left( {x + n} \right)}
\end{array}\]
\[ \Rightarrow \begin{array}{*{20}{c}}
{n{x^2} + x - mnx - m}& = &{m{x^2} + mnx + x + n}
\end{array}\]
Now we will get
\[ \Rightarrow \begin{array}{*{20}{c}}
{\left( {m - n} \right){x^2} + 2mnx + \left( {m + n} \right)}& = &0
\end{array}\]
Now we will determine the product of the roots of the above equation. Therefore, we know that
\[ \Rightarrow \begin{array}{*{20}{c}}
{\alpha \beta }& = &{\dfrac{c}{a}}
\end{array}\]
Therefore,
\[ \Rightarrow \begin{array}{*{20}{c}}
{\alpha \times \dfrac{1}{\alpha }}& = &{\dfrac{{m + n}}{{m - n}}}
\end{array}\]
\[ \Rightarrow \begin{array}{*{20}{c}}
1& = &{\dfrac{{m + n}}{{m - n}}}
\end{array}\]
Now we will do the cross multiplication. Therefore, we will get
\[ \Rightarrow \begin{array}{*{20}{c}}
{m + n}& = &{m - n}
\end{array}\]
Finally, we will get
\[\begin{array}{*{20}{c}}
{ \Rightarrow n}& = &0
\end{array}\]
Hence, we can choose the correct answer from the given options.
Option ‘A’ is correct
Note: In this question, it is important to note that we will get the answer when we get the product of the roots of the quadratic equation.
Formula Used:Formula used:
1) \[\begin{array}{*{20}{c}}
{\alpha \beta }& = &{\dfrac{c}{a}}
\end{array}\]
Complete step by step solution:In this question, we have given a quadratic equation. Let us assume that the roots of the quadratic equation are \[\alpha \]and \[\beta \]respectively.
According to the condition that is given in the question, the roots of the quadratic equations are reciprocal to each other. If the one root of a quadratic equation is \[\alpha \], then the other root of the quadratic equation will be \[\dfrac{1}{\alpha }\]. Therefore, we can write the other root as,
\[\begin{array}{*{20}{c}}
\beta & = &{\dfrac{1}{\alpha }}
\end{array}\]
Now we have the equation
\[ \Rightarrow \begin{array}{*{20}{c}}
{\dfrac{{x - m}}{{mx + 1}}}& = &{\dfrac{{x + n}}{{nx + 1}}}
\end{array}\]
Now we will convert the above equation into the general form of the quadratic equation. For that purpose, first of all, we will do a cross multiplication of the above equation. Therefore, we will get
\[ \Rightarrow \begin{array}{*{20}{c}}
{\left( {x - m} \right)\left( {nx + 1} \right)}& = &{\left( {mx + 1} \right)\left( {x + n} \right)}
\end{array}\]
\[ \Rightarrow \begin{array}{*{20}{c}}
{n{x^2} + x - mnx - m}& = &{m{x^2} + mnx + x + n}
\end{array}\]
Now we will get
\[ \Rightarrow \begin{array}{*{20}{c}}
{\left( {m - n} \right){x^2} + 2mnx + \left( {m + n} \right)}& = &0
\end{array}\]
Now we will determine the product of the roots of the above equation. Therefore, we know that
\[ \Rightarrow \begin{array}{*{20}{c}}
{\alpha \beta }& = &{\dfrac{c}{a}}
\end{array}\]
Therefore,
\[ \Rightarrow \begin{array}{*{20}{c}}
{\alpha \times \dfrac{1}{\alpha }}& = &{\dfrac{{m + n}}{{m - n}}}
\end{array}\]
\[ \Rightarrow \begin{array}{*{20}{c}}
1& = &{\dfrac{{m + n}}{{m - n}}}
\end{array}\]
Now we will do the cross multiplication. Therefore, we will get
\[ \Rightarrow \begin{array}{*{20}{c}}
{m + n}& = &{m - n}
\end{array}\]
Finally, we will get
\[\begin{array}{*{20}{c}}
{ \Rightarrow n}& = &0
\end{array}\]
Hence, we can choose the correct answer from the given options.
Option ‘A’ is correct
Note: In this question, it is important to note that we will get the answer when we get the product of the roots of the quadratic equation.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

