
If the radius of the earth be increased by a factor of \[5\] by what factor its density be changed to keep the value of \[g\] .
A) \[\dfrac{1}{25}\]
B) \[\dfrac{1}{5}\]
C) \[\dfrac{1}{\sqrt{5}}\]
D) \[5\]
Answer
219k+ views
Hint: Acceleration due to gravity on the earth’s surface is directly proportional to the mass of the earth and inversely proportional to the radius of the earth. Any changes in the radius of the earth will affect the volume of the earth as well and the change must be counterbalanced by an equivalent change in the mass of the earth.
Formula used: \[g=\dfrac{GM}{{{R}^{2}}}\]
Complete step by step solution:
The acceleration due to gravity on the earth’s surface is given as \[g=\dfrac{GM}{{{R}^{2}}}\] where \[G\] is universal gravitational constant, \[M\] is the mass of earth and \[R\] is the radius of the earth’s surface.
Now, the mass of any solid body can be expressed as a product of its density and volume, that is, \[M=\rho V\]
Substituting this value back in our original equation of acceleration due to gravity, we get \[g=\dfrac{G\rho V}{{{R}^{2}}}\]
Earth’s shape being roughly spherical, its volume can be given by the formula \[V=\dfrac{4}{3}\pi {{R}^{3}}\]
Substituting the expression for volume in our previous equation, we get
\[\begin{align}
& g=\dfrac{G\rho \dfrac{4}{3}\pi {{R}^{3}}}{{{R}^{2}}} \\
& \Rightarrow g=\dfrac{4}{3}\pi G\rho R \\
\end{align}\]
Hence, we can now conclude that the value of acceleration due to gravity is directly proportional to the product of the density of the body and the radius of the body, since all other terms in the expression are constants, that is,
\[g\propto \rho R\]
Hence, we can clearly say that if the radius of the earth is being increased by a factor of \[5\], density must experience a decrease by \[\dfrac{1}{5}\] to prevent any change in the value of acceleration due to gravity.
Note: If we see the expression for g, at first sight, we might just think that it varies only with the square of the radius and we might not think about the density variation since density does not come into the expression, mass does. Hence it is always a good practice to first express the quantity In terms of the physical quantities whose variation is known to us.
Formula used: \[g=\dfrac{GM}{{{R}^{2}}}\]
Complete step by step solution:
The acceleration due to gravity on the earth’s surface is given as \[g=\dfrac{GM}{{{R}^{2}}}\] where \[G\] is universal gravitational constant, \[M\] is the mass of earth and \[R\] is the radius of the earth’s surface.
Now, the mass of any solid body can be expressed as a product of its density and volume, that is, \[M=\rho V\]
Substituting this value back in our original equation of acceleration due to gravity, we get \[g=\dfrac{G\rho V}{{{R}^{2}}}\]
Earth’s shape being roughly spherical, its volume can be given by the formula \[V=\dfrac{4}{3}\pi {{R}^{3}}\]
Substituting the expression for volume in our previous equation, we get
\[\begin{align}
& g=\dfrac{G\rho \dfrac{4}{3}\pi {{R}^{3}}}{{{R}^{2}}} \\
& \Rightarrow g=\dfrac{4}{3}\pi G\rho R \\
\end{align}\]
Hence, we can now conclude that the value of acceleration due to gravity is directly proportional to the product of the density of the body and the radius of the body, since all other terms in the expression are constants, that is,
\[g\propto \rho R\]
Hence, we can clearly say that if the radius of the earth is being increased by a factor of \[5\], density must experience a decrease by \[\dfrac{1}{5}\] to prevent any change in the value of acceleration due to gravity.
Note: If we see the expression for g, at first sight, we might just think that it varies only with the square of the radius and we might not think about the density variation since density does not come into the expression, mass does. Hence it is always a good practice to first express the quantity In terms of the physical quantities whose variation is known to us.
Recently Updated Pages
A square frame of side 10 cm and a long straight wire class 12 physics JEE_Main

The work done in slowly moving an electron of charge class 12 physics JEE_Main

Two identical charged spheres suspended from a common class 12 physics JEE_Main

According to Bohrs theory the timeaveraged magnetic class 12 physics JEE_Main

ill in the blanks Pure tungsten has A Low resistivity class 12 physics JEE_Main

The value of the resistor RS needed in the DC voltage class 12 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

