If the \[{p^{th}},{q^{th}}\] and \[{r^{th}}\] term of a G.P. are \[a,b,c\] respectively, then \[{a^{q - r}} \cdot {b^{r - p}} \cdot {c^{p - q}}\] is equal to
A. 0
B. 1
C.\[abc\]
D.\[pqr\]
Answer
Verified
117k+ views
Hint:
Geometric Progression is abbreviated as GP. Th series \[a,ar,a{r^2},a{r^3},......\] are said to be in GP where ‘a’ is the first word and r is the common ratio. The n-th term is given as \[{n^{th}}term = a{r^{n - 1}}\]. Geometric progression is a non-zero number series in which each term following the first is determined by multiplying the preceding value by a fixed non-zero number known as the common ratio.
Complete step-by-step solution
We have been given that,
The \[{p^{th}},{q^{th}}\]\[{r^{th}}\] terms of a G.P. are \[a,b,c\] respectively.
We can have,
A as first term, r as common ratio
By using the formula \[{n^{{\rm{th }}}}\] term \[ = A{R^{n - 1}}\], the \[{n^{{\rm{th }}}}\]term has to be calculated:
The\[{n^{{\rm{th }}}}\]term,
\[{A_n} = A{R^{n - 1}}\]
The \[{p^{{\rm{th }}}}\] term can be expressed as the below, according to the question,
\[{p^{{\rm{th }}}}{\rm{ term }} = A{R^{p - 1}}\]
The \[{q^{{\rm{th }}}}\] term is,
\[{q^{{\rm{th }}}}{\rm{ term }} = A{R^{q - 1}}\]
The \[{r^{{\rm{th }}}}\] term is,
\[{r^{{\rm{th }}}}{\rm{ term }} = A{R^{r - 1}}\]
As\[a\]is equal to the \[{p^{{\rm{th }}}}\] term, we can rewrite the equation as
\[a = A{R^{p - 1}}\]
The \[{q^{{\rm{th }}}}\] term is equal to \[b\]. The equation can be written as,
\[b = A{R^{q - 1}}\]
The\[{r^{{\rm{th }}}}\]term is equal to \[c\]. The equation can be written as,
\[c = A{R^{r - 1}}\]
Now, use the exponent property to solve the equation:
\[{a^{q - r}} \cdot {b^{r - p}} \cdot {c^{p - q}} = {A^{q - r}}{R^{(p - 1)(q - r)}} \cdot {A^{r - p}}{R^{(q - 1)\left( {^{( - p)}} \right.}} \cdot {A^{p - q}}{R^{(r - 1)(p - q)}}\]
In above equation, the exponent property used is
\[{\left( {{x^m}} \right)^n} = {x^{m \times n}}\]
Now, we have to use the exponent properties again,
\[{a^{q - r}} \cdot {b^{r - p}} \cdot {c^{p - q}} = {A^{(q - r) + (r - p) + (p - q)}}{R^{(p - 1)(q - r) + (q - 1)\left({{ r - p) + }(r - 1)(p - q)} \right.}}\]
The property used is
\[{x^m} \times {x^n} = {x^{m + n}}\]
We have to simplify the solution, we get
\[{a^{q - r}} \cdot {b^{r - p}} \cdot {c^{p - q}} = {A^0}{R^{pr - pr - q + r + qr - pq - r + p + pr - qr - p + q}}\]
We have to solve further until solution is obtained,
\[{a^{q - r}} \cdot {b^{r - p}} \cdot {c^{p - q}} = {A^0}{R^0}\]
Let’s apply exponent property \[{x^0} = 1\] we get
\[{a^{q - r}} \cdot {b^{r - p}} \cdot {c^{p - q}} = 1\]
Therefore, \[{a^{q - r}} \cdot {b^{r - p}} \cdot {c^{p - q}}\] is equal to\[1\].
Hence, option B is the correct answer.
Note:
While students are solving geometric progression problems, it necessitates an understanding of exponent characteristics. Exponent properties are sometimes known as indices laws. The exponent is the base value's power. The expression for repeated multiplication of the same number is power. The exponent is the amount that represents the power to which a number is raised.
Geometric Progression is abbreviated as GP. Th series \[a,ar,a{r^2},a{r^3},......\] are said to be in GP where ‘a’ is the first word and r is the common ratio. The n-th term is given as \[{n^{th}}term = a{r^{n - 1}}\]. Geometric progression is a non-zero number series in which each term following the first is determined by multiplying the preceding value by a fixed non-zero number known as the common ratio.
Complete step-by-step solution
We have been given that,
The \[{p^{th}},{q^{th}}\]\[{r^{th}}\] terms of a G.P. are \[a,b,c\] respectively.
We can have,
A as first term, r as common ratio
By using the formula \[{n^{{\rm{th }}}}\] term \[ = A{R^{n - 1}}\], the \[{n^{{\rm{th }}}}\]term has to be calculated:
The\[{n^{{\rm{th }}}}\]term,
\[{A_n} = A{R^{n - 1}}\]
The \[{p^{{\rm{th }}}}\] term can be expressed as the below, according to the question,
\[{p^{{\rm{th }}}}{\rm{ term }} = A{R^{p - 1}}\]
The \[{q^{{\rm{th }}}}\] term is,
\[{q^{{\rm{th }}}}{\rm{ term }} = A{R^{q - 1}}\]
The \[{r^{{\rm{th }}}}\] term is,
\[{r^{{\rm{th }}}}{\rm{ term }} = A{R^{r - 1}}\]
As\[a\]is equal to the \[{p^{{\rm{th }}}}\] term, we can rewrite the equation as
\[a = A{R^{p - 1}}\]
The \[{q^{{\rm{th }}}}\] term is equal to \[b\]. The equation can be written as,
\[b = A{R^{q - 1}}\]
The\[{r^{{\rm{th }}}}\]term is equal to \[c\]. The equation can be written as,
\[c = A{R^{r - 1}}\]
Now, use the exponent property to solve the equation:
\[{a^{q - r}} \cdot {b^{r - p}} \cdot {c^{p - q}} = {A^{q - r}}{R^{(p - 1)(q - r)}} \cdot {A^{r - p}}{R^{(q - 1)\left( {^{( - p)}} \right.}} \cdot {A^{p - q}}{R^{(r - 1)(p - q)}}\]
In above equation, the exponent property used is
\[{\left( {{x^m}} \right)^n} = {x^{m \times n}}\]
Now, we have to use the exponent properties again,
\[{a^{q - r}} \cdot {b^{r - p}} \cdot {c^{p - q}} = {A^{(q - r) + (r - p) + (p - q)}}{R^{(p - 1)(q - r) + (q - 1)\left({{ r - p) + }(r - 1)(p - q)} \right.}}\]
The property used is
\[{x^m} \times {x^n} = {x^{m + n}}\]
We have to simplify the solution, we get
\[{a^{q - r}} \cdot {b^{r - p}} \cdot {c^{p - q}} = {A^0}{R^{pr - pr - q + r + qr - pq - r + p + pr - qr - p + q}}\]
We have to solve further until solution is obtained,
\[{a^{q - r}} \cdot {b^{r - p}} \cdot {c^{p - q}} = {A^0}{R^0}\]
Let’s apply exponent property \[{x^0} = 1\] we get
\[{a^{q - r}} \cdot {b^{r - p}} \cdot {c^{p - q}} = 1\]
Therefore, \[{a^{q - r}} \cdot {b^{r - p}} \cdot {c^{p - q}}\] is equal to\[1\].
Hence, option B is the correct answer.
Note:
While students are solving geometric progression problems, it necessitates an understanding of exponent characteristics. Exponent properties are sometimes known as indices laws. The exponent is the base value's power. The expression for repeated multiplication of the same number is power. The exponent is the amount that represents the power to which a number is raised.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Concept of CP and CV of Gas - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Main Login 2045: Step-by-Step Instructions and Details
Physics Average Value and RMS Value JEE Main 2025
Other Pages
NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines
NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections
NCERT Solutions for Class 11 Maths Chapter 13 Statistics
NCERT Solutions for Class 11 Maths Chapter 12 Limits and Derivatives
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs