
If the \[{p^{th}},{q^{th}}\] and \[{r^{th}}\] term of a G.P. are \[a,b,c\] respectively, then \[{a^{q - r}} \cdot {b^{r - p}} \cdot {c^{p - q}}\] is equal to
A. 0
B. 1
C.\[abc\]
D.\[pqr\]
Answer
218.1k+ views
Hint:
Geometric Progression is abbreviated as GP. Th series \[a,ar,a{r^2},a{r^3},......\] are said to be in GP where ‘a’ is the first word and r is the common ratio. The n-th term is given as \[{n^{th}}term = a{r^{n - 1}}\]. Geometric progression is a non-zero number series in which each term following the first is determined by multiplying the preceding value by a fixed non-zero number known as the common ratio.
Complete step-by-step solution
We have been given that,
The \[{p^{th}},{q^{th}}\]\[{r^{th}}\] terms of a G.P. are \[a,b,c\] respectively.
We can have,
A as first term, r as common ratio
By using the formula \[{n^{{\rm{th }}}}\] term \[ = A{R^{n - 1}}\], the \[{n^{{\rm{th }}}}\]term has to be calculated:
The\[{n^{{\rm{th }}}}\]term,
\[{A_n} = A{R^{n - 1}}\]
The \[{p^{{\rm{th }}}}\] term can be expressed as the below, according to the question,
\[{p^{{\rm{th }}}}{\rm{ term }} = A{R^{p - 1}}\]
The \[{q^{{\rm{th }}}}\] term is,
\[{q^{{\rm{th }}}}{\rm{ term }} = A{R^{q - 1}}\]
The \[{r^{{\rm{th }}}}\] term is,
\[{r^{{\rm{th }}}}{\rm{ term }} = A{R^{r - 1}}\]
As\[a\]is equal to the \[{p^{{\rm{th }}}}\] term, we can rewrite the equation as
\[a = A{R^{p - 1}}\]
The \[{q^{{\rm{th }}}}\] term is equal to \[b\]. The equation can be written as,
\[b = A{R^{q - 1}}\]
The\[{r^{{\rm{th }}}}\]term is equal to \[c\]. The equation can be written as,
\[c = A{R^{r - 1}}\]
Now, use the exponent property to solve the equation:
\[{a^{q - r}} \cdot {b^{r - p}} \cdot {c^{p - q}} = {A^{q - r}}{R^{(p - 1)(q - r)}} \cdot {A^{r - p}}{R^{(q - 1)\left( {^{( - p)}} \right.}} \cdot {A^{p - q}}{R^{(r - 1)(p - q)}}\]
In above equation, the exponent property used is
\[{\left( {{x^m}} \right)^n} = {x^{m \times n}}\]
Now, we have to use the exponent properties again,
\[{a^{q - r}} \cdot {b^{r - p}} \cdot {c^{p - q}} = {A^{(q - r) + (r - p) + (p - q)}}{R^{(p - 1)(q - r) + (q - 1)\left({{ r - p) + }(r - 1)(p - q)} \right.}}\]
The property used is
\[{x^m} \times {x^n} = {x^{m + n}}\]
We have to simplify the solution, we get
\[{a^{q - r}} \cdot {b^{r - p}} \cdot {c^{p - q}} = {A^0}{R^{pr - pr - q + r + qr - pq - r + p + pr - qr - p + q}}\]
We have to solve further until solution is obtained,
\[{a^{q - r}} \cdot {b^{r - p}} \cdot {c^{p - q}} = {A^0}{R^0}\]
Let’s apply exponent property \[{x^0} = 1\] we get
\[{a^{q - r}} \cdot {b^{r - p}} \cdot {c^{p - q}} = 1\]
Therefore, \[{a^{q - r}} \cdot {b^{r - p}} \cdot {c^{p - q}}\] is equal to\[1\].
Hence, option B is the correct answer.
Note:
While students are solving geometric progression problems, it necessitates an understanding of exponent characteristics. Exponent properties are sometimes known as indices laws. The exponent is the base value's power. The expression for repeated multiplication of the same number is power. The exponent is the amount that represents the power to which a number is raised.
Geometric Progression is abbreviated as GP. Th series \[a,ar,a{r^2},a{r^3},......\] are said to be in GP where ‘a’ is the first word and r is the common ratio. The n-th term is given as \[{n^{th}}term = a{r^{n - 1}}\]. Geometric progression is a non-zero number series in which each term following the first is determined by multiplying the preceding value by a fixed non-zero number known as the common ratio.
Complete step-by-step solution
We have been given that,
The \[{p^{th}},{q^{th}}\]\[{r^{th}}\] terms of a G.P. are \[a,b,c\] respectively.
We can have,
A as first term, r as common ratio
By using the formula \[{n^{{\rm{th }}}}\] term \[ = A{R^{n - 1}}\], the \[{n^{{\rm{th }}}}\]term has to be calculated:
The\[{n^{{\rm{th }}}}\]term,
\[{A_n} = A{R^{n - 1}}\]
The \[{p^{{\rm{th }}}}\] term can be expressed as the below, according to the question,
\[{p^{{\rm{th }}}}{\rm{ term }} = A{R^{p - 1}}\]
The \[{q^{{\rm{th }}}}\] term is,
\[{q^{{\rm{th }}}}{\rm{ term }} = A{R^{q - 1}}\]
The \[{r^{{\rm{th }}}}\] term is,
\[{r^{{\rm{th }}}}{\rm{ term }} = A{R^{r - 1}}\]
As\[a\]is equal to the \[{p^{{\rm{th }}}}\] term, we can rewrite the equation as
\[a = A{R^{p - 1}}\]
The \[{q^{{\rm{th }}}}\] term is equal to \[b\]. The equation can be written as,
\[b = A{R^{q - 1}}\]
The\[{r^{{\rm{th }}}}\]term is equal to \[c\]. The equation can be written as,
\[c = A{R^{r - 1}}\]
Now, use the exponent property to solve the equation:
\[{a^{q - r}} \cdot {b^{r - p}} \cdot {c^{p - q}} = {A^{q - r}}{R^{(p - 1)(q - r)}} \cdot {A^{r - p}}{R^{(q - 1)\left( {^{( - p)}} \right.}} \cdot {A^{p - q}}{R^{(r - 1)(p - q)}}\]
In above equation, the exponent property used is
\[{\left( {{x^m}} \right)^n} = {x^{m \times n}}\]
Now, we have to use the exponent properties again,
\[{a^{q - r}} \cdot {b^{r - p}} \cdot {c^{p - q}} = {A^{(q - r) + (r - p) + (p - q)}}{R^{(p - 1)(q - r) + (q - 1)\left({{ r - p) + }(r - 1)(p - q)} \right.}}\]
The property used is
\[{x^m} \times {x^n} = {x^{m + n}}\]
We have to simplify the solution, we get
\[{a^{q - r}} \cdot {b^{r - p}} \cdot {c^{p - q}} = {A^0}{R^{pr - pr - q + r + qr - pq - r + p + pr - qr - p + q}}\]
We have to solve further until solution is obtained,
\[{a^{q - r}} \cdot {b^{r - p}} \cdot {c^{p - q}} = {A^0}{R^0}\]
Let’s apply exponent property \[{x^0} = 1\] we get
\[{a^{q - r}} \cdot {b^{r - p}} \cdot {c^{p - q}} = 1\]
Therefore, \[{a^{q - r}} \cdot {b^{r - p}} \cdot {c^{p - q}}\] is equal to\[1\].
Hence, option B is the correct answer.
Note:
While students are solving geometric progression problems, it necessitates an understanding of exponent characteristics. Exponent properties are sometimes known as indices laws. The exponent is the base value's power. The expression for repeated multiplication of the same number is power. The exponent is the amount that represents the power to which a number is raised.
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

Understanding Atomic Structure for Beginners

