
If the potential energy of a gas molecule is \[U = \dfrac{M}{{{r^6}}} - \dfrac{N}{{{r^{12}}}}\] , M and N being positive constants, then the potential energy and equilibrium is:
(A) 0
(B) \[\dfrac{{N{M^2}}}{4}\]
(C) \[\dfrac{{M{N^2}}}{4}\]
(D) \[\dfrac{{{M^2}}}{{4N}}\]
Answer
219.6k+ views
Hint: In this question, we are given the function of the potential field as a function of radius of the gas molecule. First, we need to find the forces acting on the gas molecule. Then we need to use the fact that at equilibrium, the sum of net forces acting on the particle is 0. This will give us the distance at which the force is 0. Substituting this distance in the function of potential energy we will get our solution.
Complete step by step solution
We know that when a body is placed in a field of some potential energy, it experiences force. This force is equal to the negative gradient of the potential field at that point.
\[F = - \dfrac{{dU}}{{dr}}\]
\[
F = - \dfrac{{d(\dfrac{M}{{{r^6}}} - \dfrac{N}{{{r^{12}}}})}}{{dr}} \\
F = - (\dfrac{{ - 6M}}{{{r^7}}} - \dfrac{{ - 12N}}{{{r^{13}}}}) \\
F = \dfrac{{6M}}{{{r^7}}} - \dfrac{{12N}}{{{r^{13}}}} \\
\]
We also know that at linear equilibrium, the net forces acting on the body is equal to 0. Equating this force to 0 we get:
\[
0 = \dfrac{{6M}}{{{r^7}}} - \dfrac{{12N}}{{{r^{13}}}} \\
\dfrac{{6M}}{{{r^7}}} = \dfrac{{12N}}{{{r^{13}}}} \\
{r^6} = \dfrac{{2N}}{M} \\
\]
Substituting the value of r in the equation for potential energy we get:
\[
U = \dfrac{{{M^2}}}{{2N}} - \dfrac{{N{M^2}}}{{{{(2N)}^2}}} \\
U = \dfrac{{{M^2}}}{{2N}} - \dfrac{{{M^2}}}{{4N}} \\
U = \dfrac{{{M^2}}}{{4N}} \\
\]
Therefore the option with the correct answer is option D
Note
Potential energy of an electric or magnetic field will always have a negative sign with them. This negative potential energy means that work must be done to move the charge or the mass of a body against this electric or gravitational field.
Complete step by step solution
We know that when a body is placed in a field of some potential energy, it experiences force. This force is equal to the negative gradient of the potential field at that point.
\[F = - \dfrac{{dU}}{{dr}}\]
\[
F = - \dfrac{{d(\dfrac{M}{{{r^6}}} - \dfrac{N}{{{r^{12}}}})}}{{dr}} \\
F = - (\dfrac{{ - 6M}}{{{r^7}}} - \dfrac{{ - 12N}}{{{r^{13}}}}) \\
F = \dfrac{{6M}}{{{r^7}}} - \dfrac{{12N}}{{{r^{13}}}} \\
\]
We also know that at linear equilibrium, the net forces acting on the body is equal to 0. Equating this force to 0 we get:
\[
0 = \dfrac{{6M}}{{{r^7}}} - \dfrac{{12N}}{{{r^{13}}}} \\
\dfrac{{6M}}{{{r^7}}} = \dfrac{{12N}}{{{r^{13}}}} \\
{r^6} = \dfrac{{2N}}{M} \\
\]
Substituting the value of r in the equation for potential energy we get:
\[
U = \dfrac{{{M^2}}}{{2N}} - \dfrac{{N{M^2}}}{{{{(2N)}^2}}} \\
U = \dfrac{{{M^2}}}{{2N}} - \dfrac{{{M^2}}}{{4N}} \\
U = \dfrac{{{M^2}}}{{4N}} \\
\]
Therefore the option with the correct answer is option D
Note
Potential energy of an electric or magnetic field will always have a negative sign with them. This negative potential energy means that work must be done to move the charge or the mass of a body against this electric or gravitational field.
Recently Updated Pages
Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

States of Matter Chapter For JEE Main Chemistry

Trending doubts
Understanding Uniform Acceleration in Physics

Understanding Atomic Structure for Beginners

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Average and RMS Value in Electrical Circuits

Other Pages
NCERT Solutions for Class 11 Physics Chapter 6 System Of Particles And Rotational Motion 2025-26

Understanding Entropy Changes in Different Processes

Common Ion Effect: Concept, Applications, and Problem-Solving

Understanding Excess Pressure Inside a Liquid Drop

NCERT Solutions For Class 11 Physics Chapter 12 Kinetic Theory - 2025-26

Motion In A Plane Class 11 Physics Chapter 3 CBSE Notes - 2025-26

