
If the potential energy of a gas molecule is \[U = \dfrac{M}{{{r^6}}} - \dfrac{N}{{{r^{12}}}}\] , M and N being positive constants, then the potential energy and equilibrium is:
(A) 0
(B) \[\dfrac{{N{M^2}}}{4}\]
(C) \[\dfrac{{M{N^2}}}{4}\]
(D) \[\dfrac{{{M^2}}}{{4N}}\]
Answer
124.2k+ views
Hint: In this question, we are given the function of the potential field as a function of radius of the gas molecule. First, we need to find the forces acting on the gas molecule. Then we need to use the fact that at equilibrium, the sum of net forces acting on the particle is 0. This will give us the distance at which the force is 0. Substituting this distance in the function of potential energy we will get our solution.
Complete step by step solution
We know that when a body is placed in a field of some potential energy, it experiences force. This force is equal to the negative gradient of the potential field at that point.
\[F = - \dfrac{{dU}}{{dr}}\]
\[
F = - \dfrac{{d(\dfrac{M}{{{r^6}}} - \dfrac{N}{{{r^{12}}}})}}{{dr}} \\
F = - (\dfrac{{ - 6M}}{{{r^7}}} - \dfrac{{ - 12N}}{{{r^{13}}}}) \\
F = \dfrac{{6M}}{{{r^7}}} - \dfrac{{12N}}{{{r^{13}}}} \\
\]
We also know that at linear equilibrium, the net forces acting on the body is equal to 0. Equating this force to 0 we get:
\[
0 = \dfrac{{6M}}{{{r^7}}} - \dfrac{{12N}}{{{r^{13}}}} \\
\dfrac{{6M}}{{{r^7}}} = \dfrac{{12N}}{{{r^{13}}}} \\
{r^6} = \dfrac{{2N}}{M} \\
\]
Substituting the value of r in the equation for potential energy we get:
\[
U = \dfrac{{{M^2}}}{{2N}} - \dfrac{{N{M^2}}}{{{{(2N)}^2}}} \\
U = \dfrac{{{M^2}}}{{2N}} - \dfrac{{{M^2}}}{{4N}} \\
U = \dfrac{{{M^2}}}{{4N}} \\
\]
Therefore the option with the correct answer is option D
Note
Potential energy of an electric or magnetic field will always have a negative sign with them. This negative potential energy means that work must be done to move the charge or the mass of a body against this electric or gravitational field.
Complete step by step solution
We know that when a body is placed in a field of some potential energy, it experiences force. This force is equal to the negative gradient of the potential field at that point.
\[F = - \dfrac{{dU}}{{dr}}\]
\[
F = - \dfrac{{d(\dfrac{M}{{{r^6}}} - \dfrac{N}{{{r^{12}}}})}}{{dr}} \\
F = - (\dfrac{{ - 6M}}{{{r^7}}} - \dfrac{{ - 12N}}{{{r^{13}}}}) \\
F = \dfrac{{6M}}{{{r^7}}} - \dfrac{{12N}}{{{r^{13}}}} \\
\]
We also know that at linear equilibrium, the net forces acting on the body is equal to 0. Equating this force to 0 we get:
\[
0 = \dfrac{{6M}}{{{r^7}}} - \dfrac{{12N}}{{{r^{13}}}} \\
\dfrac{{6M}}{{{r^7}}} = \dfrac{{12N}}{{{r^{13}}}} \\
{r^6} = \dfrac{{2N}}{M} \\
\]
Substituting the value of r in the equation for potential energy we get:
\[
U = \dfrac{{{M^2}}}{{2N}} - \dfrac{{N{M^2}}}{{{{(2N)}^2}}} \\
U = \dfrac{{{M^2}}}{{2N}} - \dfrac{{{M^2}}}{{4N}} \\
U = \dfrac{{{M^2}}}{{4N}} \\
\]
Therefore the option with the correct answer is option D
Note
Potential energy of an electric or magnetic field will always have a negative sign with them. This negative potential energy means that work must be done to move the charge or the mass of a body against this electric or gravitational field.
Recently Updated Pages
Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

Class 11 JEE Main Physics Mock Test 2025

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
