
If the mean of the set of numbers ${x_1},{x_2},...,{x_n}$ is $\bar x$, then the mean of the numbers ${x_i} + 2i,1 \le i \le n$ is
A. $\bar x + 2n$
B. $\bar x + n + 1$
C. $\bar x + 3n$
D. $\bar x + n$
Answer
216.6k+ views
Hint: Here mean of the set of some numbers is given and mean of some numbers related to the given numbers is asked. To solve this type of problem, you need to use the formula of finding the mean of numbers. Basically, the mean is nothing but the average of some given numbers. It is obtained by calculating the sum of the observations divided by the total number of given observations.
Formula Used:
Mean of the numbers ${x_1},{x_2},{x_3},...,{x_n}$ is defined by $\bar x = \dfrac{{{x_1} + {x_2} + {x_3} + ... + {x_n}}}{n}$, where $n$ is total number of given observations.
Sum of first $n$ natural numbers is $1 + 2 + 3 + ... + n = \dfrac{{n\left( {n + 1} \right)}}{2}$
Complete step by step solution:
The given numbers are ${x_1},{x_2},{x_3},...,{x_n}$
Mean of the numbers is the sum of observations divided by total number of given observations i.e.
$\bar x = \dfrac{{{x_1} + {x_2} + {x_3} + ... + {x_n}}}{n}$
$ \Rightarrow {x_1} + {x_2} + {x_3} + ... + {x_n} = n\bar x - - - - - \left( i \right)$
We have to find the arithmetic mean of the numbers ${x_i} + 2i,1 \le i \le n$
Sum of the numbers is $\sum\limits_{i = 1}^n {\left( {{x_i} + 2i} \right)} $
Expand the series putting $i = 1,2,3,...,n$
$ = \left( {{x_1} + 2 \cdot 1} \right) + \left( {{x_2} + 2 \cdot 2} \right) + \left( {{x_3} + 2 \cdot 3} \right) + ... + \left( {{x_n} + 2 \cdot n} \right)$
Arrange the terms.
$ = \left( {{x_1} + {x_2} + {x_3} + ... + {x_n}} \right) + 2\left( {1 + 2 + 3 + ... + n} \right)$
There are total $n$ observations required.
So, $1 + 2 + 3 + ... + n = \dfrac{{n\left( {n + 1} \right)}}{2}$
and substitute ${x_1} + {x_2} + {x_3} + ... + {x_n} = n\bar x$ from equation $\left( i \right)$
Thus, the sum becomes $n\bar x + 2\left\{ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right\} = n\bar x + n\left( {n + 1} \right) = n\left( {\bar x + n + 1} \right)$
Dividing the sum by $n$, we get
Mean of the numbers $ = \dfrac{{n\left( {\bar x + n + 1} \right)}}{n} = \bar x + n + 1$
Option ‘B’ is correct
Note: Mean is simply average of the given numbers. If we add or subtract a number from each of the given numbers then, the mean of the resulting numbers will be equal to the mean of the given numbers with added or subtracted the number which we previously added or subtracted.
Formula Used:
Mean of the numbers ${x_1},{x_2},{x_3},...,{x_n}$ is defined by $\bar x = \dfrac{{{x_1} + {x_2} + {x_3} + ... + {x_n}}}{n}$, where $n$ is total number of given observations.
Sum of first $n$ natural numbers is $1 + 2 + 3 + ... + n = \dfrac{{n\left( {n + 1} \right)}}{2}$
Complete step by step solution:
The given numbers are ${x_1},{x_2},{x_3},...,{x_n}$
Mean of the numbers is the sum of observations divided by total number of given observations i.e.
$\bar x = \dfrac{{{x_1} + {x_2} + {x_3} + ... + {x_n}}}{n}$
$ \Rightarrow {x_1} + {x_2} + {x_3} + ... + {x_n} = n\bar x - - - - - \left( i \right)$
We have to find the arithmetic mean of the numbers ${x_i} + 2i,1 \le i \le n$
Sum of the numbers is $\sum\limits_{i = 1}^n {\left( {{x_i} + 2i} \right)} $
Expand the series putting $i = 1,2,3,...,n$
$ = \left( {{x_1} + 2 \cdot 1} \right) + \left( {{x_2} + 2 \cdot 2} \right) + \left( {{x_3} + 2 \cdot 3} \right) + ... + \left( {{x_n} + 2 \cdot n} \right)$
Arrange the terms.
$ = \left( {{x_1} + {x_2} + {x_3} + ... + {x_n}} \right) + 2\left( {1 + 2 + 3 + ... + n} \right)$
There are total $n$ observations required.
So, $1 + 2 + 3 + ... + n = \dfrac{{n\left( {n + 1} \right)}}{2}$
and substitute ${x_1} + {x_2} + {x_3} + ... + {x_n} = n\bar x$ from equation $\left( i \right)$
Thus, the sum becomes $n\bar x + 2\left\{ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right\} = n\bar x + n\left( {n + 1} \right) = n\left( {\bar x + n + 1} \right)$
Dividing the sum by $n$, we get
Mean of the numbers $ = \dfrac{{n\left( {\bar x + n + 1} \right)}}{n} = \bar x + n + 1$
Option ‘B’ is correct
Note: Mean is simply average of the given numbers. If we add or subtract a number from each of the given numbers then, the mean of the resulting numbers will be equal to the mean of the given numbers with added or subtracted the number which we previously added or subtracted.
Recently Updated Pages
Properties of Solids and Liquids Practice Questions

Laws of Motion Practice Paper with Answers

Laws of Static, Kinetic & Limiting Friction Explained

Pure Rolling on Inclined Plane: Concepts & Formulae

LC Oscillations Explained: Formula, Diagram & Examples

Purely Resistive, Inductive, and Capacitive Circuits Explained

Trending doubts
JEE Main 2026: Exam Dates, Registration, Syllabus, Eligibility and Latest News

JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main 2026 Chapter-Wise Syllabus for Physics, Chemistry and Maths – Download PDF

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

JEE Main Previous Year Question Paper with Answer Keys and Solutions

Newton’s Laws of Motion Explained: Concepts, Formulas & Uses

Other Pages
NCERT Solutions For Class 10 Maths Chapter 12 Surface Area And Volume

NCERT Solutions for Class 10 Maths Chapter Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related to Circles 2025-26

Pregnancy Week and Due Date Calculator: Find How Far Along You Are

NCERT Solutions for Class 10 Maths Chapter 15 Probability

Complete List of Class 10 Maths Formulas (Chapterwise)

