
If the energy of the photon is increased by a factor of 4, then its momentum
A. Does not change
B. Decrease by a factor of 4
C. Increase by a factor of 4
D. Decrease by a factor of 2
Answer
232.5k+ views
Hint:The energy of the photon is inversely proportional to the wavelength of the photon and the momentum of the photon is also inversely proportional to the wavelength.
Formula used:
\[E = \dfrac{{hc}}{\lambda }\],
Here, E is the energy of the photon of wavelength \[\lambda \], h is the Plank’s constant and c is the speed of light.
\[p = \dfrac{h}{\lambda }\]
Here p is the momentum of the photon.
Complete step by step solution:
If a photon is having wavelength \[\lambda \]then the energy associated with the photon is given using the expression,
\[E = \dfrac{{hc}}{\lambda }\]
So, the energy of the photon is inversely proportional to the wavelength because the Plank’s constant and the speed of the light is constant.
On writing the wavelength of the photon in terms of energy contained in a photon, we get
\[\lambda = \dfrac{{hc}}{E} \ldots \left( i \right)\]
The momentum of the wave is given as,
\[p = \dfrac{h}{\lambda }\]
On replacing the wavelength with the expression containing energy, we get the relation between the energy and the momentum of the photon as,
\[p = \dfrac{h}{{\left( {\dfrac{{hc}}{E}} \right)}}\]
On simplifying the expression, we get
\[p = \dfrac{E}{c}\]
\[\Rightarrow p \propto E\]
So, the momentum of the photon is directly proportional to the energy of the photon.
When we increase the energy of the photon then the momentum of the photon also increases in the same proportion as energy is increased. It is given that the energy of the is increased by a factor of 4, i.e. \[{E_2} = 4{E_1}\], then we need to find the change in the momentum of the photon.From the relation between the energy of the photon and the momentum of the photon, we get
\[\dfrac{{{p_1}}}{{{p_2}}} = \dfrac{{{E_1}}}{{{E_2}}}\]
\[\Rightarrow {p_2} = \left( {\dfrac{{{E_2}}}{{{E_1}}}} \right){p_1}\]
\[\Rightarrow {p_2} = \left( {\dfrac{{4{E_1}}}{{{E_1}}}} \right){p_1}\]
\[\therefore {p_2} = 4{p_1}\]
Hence, the momentum of the photon is also increased by a factor of 4.
Therefore, the correct option is C.
Note: The energy of the photon is proportional to the frequency of the photon and the momentum of the photon is inversely proportional to the wavelength. From the relation \[c = \nu \lambda \] we see that the frequency is inversely proportional to the wavelength. Hence, the momentum of the photon is directly proportional to the energy of the photon.
Formula used:
\[E = \dfrac{{hc}}{\lambda }\],
Here, E is the energy of the photon of wavelength \[\lambda \], h is the Plank’s constant and c is the speed of light.
\[p = \dfrac{h}{\lambda }\]
Here p is the momentum of the photon.
Complete step by step solution:
If a photon is having wavelength \[\lambda \]then the energy associated with the photon is given using the expression,
\[E = \dfrac{{hc}}{\lambda }\]
So, the energy of the photon is inversely proportional to the wavelength because the Plank’s constant and the speed of the light is constant.
On writing the wavelength of the photon in terms of energy contained in a photon, we get
\[\lambda = \dfrac{{hc}}{E} \ldots \left( i \right)\]
The momentum of the wave is given as,
\[p = \dfrac{h}{\lambda }\]
On replacing the wavelength with the expression containing energy, we get the relation between the energy and the momentum of the photon as,
\[p = \dfrac{h}{{\left( {\dfrac{{hc}}{E}} \right)}}\]
On simplifying the expression, we get
\[p = \dfrac{E}{c}\]
\[\Rightarrow p \propto E\]
So, the momentum of the photon is directly proportional to the energy of the photon.
When we increase the energy of the photon then the momentum of the photon also increases in the same proportion as energy is increased. It is given that the energy of the is increased by a factor of 4, i.e. \[{E_2} = 4{E_1}\], then we need to find the change in the momentum of the photon.From the relation between the energy of the photon and the momentum of the photon, we get
\[\dfrac{{{p_1}}}{{{p_2}}} = \dfrac{{{E_1}}}{{{E_2}}}\]
\[\Rightarrow {p_2} = \left( {\dfrac{{{E_2}}}{{{E_1}}}} \right){p_1}\]
\[\Rightarrow {p_2} = \left( {\dfrac{{4{E_1}}}{{{E_1}}}} \right){p_1}\]
\[\therefore {p_2} = 4{p_1}\]
Hence, the momentum of the photon is also increased by a factor of 4.
Therefore, the correct option is C.
Note: The energy of the photon is proportional to the frequency of the photon and the momentum of the photon is inversely proportional to the wavelength. From the relation \[c = \nu \lambda \] we see that the frequency is inversely proportional to the wavelength. Hence, the momentum of the photon is directly proportional to the energy of the photon.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Uniform Acceleration in Physics

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

