
If the coefficient of cubical expansions is $x$ times of the coefficient of superficial expansion, then the value of $x$ is:
A) $2.7$
B) $2$
C) $1.5$
D) $9.5$
Answer
134.4k+ views
Hint: The increase in the area and volume with the rise in the temperature is known as superficial and cubical expansion. By finding the relation between these two expansions we can solve the given question.
Formula used:
$ \Rightarrow \dfrac{\alpha }{1} = \dfrac{\beta }{2} = \dfrac{\gamma }{3}$
Complete step by step answer:
To answer the given question, we need to understand the expansion phenomena. Whenever there is an expansion of the body due to the heating, then the body is said to be expanding and this phenomenon is known as the expansion phenomena.
The solids can undergo this phenomenon. There are totally three types of phenomenon. They are:
1. Linear expansion is the expansion that is caused due to the increase in the length of the solid. It is denoted by $\alpha $
2. Superficial expansion is the expansion that is caused due to the increase in the area of the solid. It is denoted by $\beta $
3. Cubical expansion is the expansion that is caused due to the increase in the volume of the solid. It is denoted by $\gamma $
The relation between these expansions is $\alpha ,\beta ,\gamma $. From this, it is clear that the expansions occur with the increase in the temperature.
The common relation between these expansions is:
$ \Rightarrow \dfrac{\alpha }{1} = \dfrac{\beta }{2} = \dfrac{\gamma }{3}$
It can also be represented as,
$ \Rightarrow \alpha :\beta :\gamma = 1:2:3$
Now, let us try to solve the given problem. In the question, they have given about the cubical and the superficial expansions. So, we can consider these two expansions alone. We have a relation between these two expansions. The relation is,
$ \Rightarrow \dfrac{\beta }{2} = \dfrac{\gamma }{3}$
The above equation can be written as,
$ \Rightarrow \gamma = \beta \dfrac{3}{2}........(1)$
In the question, it is given that the coefficient of the cubical expansion is increased by the $x$ times of the coefficient of superficial expansion. That is,
$ \Rightarrow \gamma = \beta x...........(2)$
We can compare equations 1 and 2. We get the answer as,
$ \Rightarrow x = \dfrac{3}{2}$
We can use division to simplify, we get,
$ \Rightarrow x = 1.5$
The value of $x$ is $1.5.$
$\therefore x = 1.5$
Hence option \[\left( C \right)\] is the correct answer.
Note: We have some basic formulae to calculate the expansions. To calculate the area expansion, we have ${A_0}(I + \beta t)$ where $\beta $ is the coefficient of the expansion. To calculate the volume expansion, we have, $\Delta V = {V_\gamma }\Delta t$ where $\gamma $ is the coefficient of volume expansion.
Formula used:
$ \Rightarrow \dfrac{\alpha }{1} = \dfrac{\beta }{2} = \dfrac{\gamma }{3}$
Complete step by step answer:
To answer the given question, we need to understand the expansion phenomena. Whenever there is an expansion of the body due to the heating, then the body is said to be expanding and this phenomenon is known as the expansion phenomena.
The solids can undergo this phenomenon. There are totally three types of phenomenon. They are:
1. Linear expansion is the expansion that is caused due to the increase in the length of the solid. It is denoted by $\alpha $
2. Superficial expansion is the expansion that is caused due to the increase in the area of the solid. It is denoted by $\beta $
3. Cubical expansion is the expansion that is caused due to the increase in the volume of the solid. It is denoted by $\gamma $
The relation between these expansions is $\alpha ,\beta ,\gamma $. From this, it is clear that the expansions occur with the increase in the temperature.
The common relation between these expansions is:
$ \Rightarrow \dfrac{\alpha }{1} = \dfrac{\beta }{2} = \dfrac{\gamma }{3}$
It can also be represented as,
$ \Rightarrow \alpha :\beta :\gamma = 1:2:3$
Now, let us try to solve the given problem. In the question, they have given about the cubical and the superficial expansions. So, we can consider these two expansions alone. We have a relation between these two expansions. The relation is,
$ \Rightarrow \dfrac{\beta }{2} = \dfrac{\gamma }{3}$
The above equation can be written as,
$ \Rightarrow \gamma = \beta \dfrac{3}{2}........(1)$
In the question, it is given that the coefficient of the cubical expansion is increased by the $x$ times of the coefficient of superficial expansion. That is,
$ \Rightarrow \gamma = \beta x...........(2)$
We can compare equations 1 and 2. We get the answer as,
$ \Rightarrow x = \dfrac{3}{2}$
We can use division to simplify, we get,
$ \Rightarrow x = 1.5$
The value of $x$ is $1.5.$
$\therefore x = 1.5$
Hence option \[\left( C \right)\] is the correct answer.
Note: We have some basic formulae to calculate the expansions. To calculate the area expansion, we have ${A_0}(I + \beta t)$ where $\beta $ is the coefficient of the expansion. To calculate the volume expansion, we have, $\Delta V = {V_\gamma }\Delta t$ where $\gamma $ is the coefficient of volume expansion.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

What are examples of Chemical Properties class 10 chemistry JEE_Main

JEE Main 2025 Session 2 Schedule Released – Check Important Details Here!

JEE Main 2025 Session 2 Admit Card – Release Date & Direct Download Link

JEE Main 2025 Session 2 Registration (Closed) - Link, Last Date & Fees

JEE Mains Result 2025 NTA NIC – Check Your Score Now!

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Class 11 JEE Main Physics Mock Test 2025

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion In A Plane: Line Class 11 Notes: CBSE Physics Chapter 3
