
If the coefficient of cubical expansions is $x$ times of the coefficient of superficial expansion, then the value of $x$ is:
A) $2.7$
B) $2$
C) $1.5$
D) $9.5$
Answer
218.1k+ views
Hint: The increase in the area and volume with the rise in the temperature is known as superficial and cubical expansion. By finding the relation between these two expansions we can solve the given question.
Formula used:
$ \Rightarrow \dfrac{\alpha }{1} = \dfrac{\beta }{2} = \dfrac{\gamma }{3}$
Complete step by step answer:
To answer the given question, we need to understand the expansion phenomena. Whenever there is an expansion of the body due to the heating, then the body is said to be expanding and this phenomenon is known as the expansion phenomena.
The solids can undergo this phenomenon. There are totally three types of phenomenon. They are:
1. Linear expansion is the expansion that is caused due to the increase in the length of the solid. It is denoted by $\alpha $
2. Superficial expansion is the expansion that is caused due to the increase in the area of the solid. It is denoted by $\beta $
3. Cubical expansion is the expansion that is caused due to the increase in the volume of the solid. It is denoted by $\gamma $
The relation between these expansions is $\alpha ,\beta ,\gamma $. From this, it is clear that the expansions occur with the increase in the temperature.
The common relation between these expansions is:
$ \Rightarrow \dfrac{\alpha }{1} = \dfrac{\beta }{2} = \dfrac{\gamma }{3}$
It can also be represented as,
$ \Rightarrow \alpha :\beta :\gamma = 1:2:3$
Now, let us try to solve the given problem. In the question, they have given about the cubical and the superficial expansions. So, we can consider these two expansions alone. We have a relation between these two expansions. The relation is,
$ \Rightarrow \dfrac{\beta }{2} = \dfrac{\gamma }{3}$
The above equation can be written as,
$ \Rightarrow \gamma = \beta \dfrac{3}{2}........(1)$
In the question, it is given that the coefficient of the cubical expansion is increased by the $x$ times of the coefficient of superficial expansion. That is,
$ \Rightarrow \gamma = \beta x...........(2)$
We can compare equations 1 and 2. We get the answer as,
$ \Rightarrow x = \dfrac{3}{2}$
We can use division to simplify, we get,
$ \Rightarrow x = 1.5$
The value of $x$ is $1.5.$
$\therefore x = 1.5$
Hence option \[\left( C \right)\] is the correct answer.
Note: We have some basic formulae to calculate the expansions. To calculate the area expansion, we have ${A_0}(I + \beta t)$ where $\beta $ is the coefficient of the expansion. To calculate the volume expansion, we have, $\Delta V = {V_\gamma }\Delta t$ where $\gamma $ is the coefficient of volume expansion.
Formula used:
$ \Rightarrow \dfrac{\alpha }{1} = \dfrac{\beta }{2} = \dfrac{\gamma }{3}$
Complete step by step answer:
To answer the given question, we need to understand the expansion phenomena. Whenever there is an expansion of the body due to the heating, then the body is said to be expanding and this phenomenon is known as the expansion phenomena.
The solids can undergo this phenomenon. There are totally three types of phenomenon. They are:
1. Linear expansion is the expansion that is caused due to the increase in the length of the solid. It is denoted by $\alpha $
2. Superficial expansion is the expansion that is caused due to the increase in the area of the solid. It is denoted by $\beta $
3. Cubical expansion is the expansion that is caused due to the increase in the volume of the solid. It is denoted by $\gamma $
The relation between these expansions is $\alpha ,\beta ,\gamma $. From this, it is clear that the expansions occur with the increase in the temperature.
The common relation between these expansions is:
$ \Rightarrow \dfrac{\alpha }{1} = \dfrac{\beta }{2} = \dfrac{\gamma }{3}$
It can also be represented as,
$ \Rightarrow \alpha :\beta :\gamma = 1:2:3$
Now, let us try to solve the given problem. In the question, they have given about the cubical and the superficial expansions. So, we can consider these two expansions alone. We have a relation between these two expansions. The relation is,
$ \Rightarrow \dfrac{\beta }{2} = \dfrac{\gamma }{3}$
The above equation can be written as,
$ \Rightarrow \gamma = \beta \dfrac{3}{2}........(1)$
In the question, it is given that the coefficient of the cubical expansion is increased by the $x$ times of the coefficient of superficial expansion. That is,
$ \Rightarrow \gamma = \beta x...........(2)$
We can compare equations 1 and 2. We get the answer as,
$ \Rightarrow x = \dfrac{3}{2}$
We can use division to simplify, we get,
$ \Rightarrow x = 1.5$
The value of $x$ is $1.5.$
$\therefore x = 1.5$
Hence option \[\left( C \right)\] is the correct answer.
Note: We have some basic formulae to calculate the expansions. To calculate the area expansion, we have ${A_0}(I + \beta t)$ where $\beta $ is the coefficient of the expansion. To calculate the volume expansion, we have, $\Delta V = {V_\gamma }\Delta t$ where $\gamma $ is the coefficient of volume expansion.
Recently Updated Pages
Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

