
If the charge on the condenser of $10\mu F$ is doubled, then the energy stored in it becomes ______
(A) Zero
(B) Twice that of internal energy
(C) Half the initial energy
(D) Four times the initial energy
Answer
214.5k+ views
Hint:The energy in a capacitor is given by the square of the charge divided by twice the capacitance. So, since the capacitance is constant, the energy will be proportional to square of the charge. So when the charge will be doubled, the energy becomes four times.
Formula Used:In this solution we will be using the following formula,
$E = \dfrac{{{Q^2}}}{{2C}}$
where $E$ is the energy of the condenser,
$Q$ is the charge on the condenser and
$C$ is the capacitance.
Complete Step by Step Solution:
The energy stored in a capacitor is the potential energy that is related to the voltage and charge on the capacitor. If the capacitance of a capacitor is given $C$ and the charge in it is given $Q$, where $V$ is the voltage across the plates, then the energy of the capacitor is given by the formula,
$E = \dfrac{1}{2}C{V^2}$
Now, for a capacitor, $Q = CV$
So we can replace the $V$ from the energy term by,
$V = \dfrac{Q}{C}$
So we get energy as,
$\Rightarrow E = \dfrac{1}{2}C\dfrac{{{Q^2}}}{{{C^2}}}$
So cancelling the $C$ from numerator and denominator, we get
$\Rightarrow E = \dfrac{{{Q^2}}}{{2C}}$
So from this formula we can see that the energy is proportional to the square of the charge.
Now in the question we are given that the charge in the capacitor is doubled. So the value of the capacitance is the same in both cases.
$\Rightarrow E \propto {Q^2}$
Therefore when the charge gets doubled,
$\Rightarrow E \propto {\left( {2Q} \right)^2}$
This gives us,
$\Rightarrow E \propto 4{Q^2}$
Therefore we can see that the energy becomes four times when the charge gets doubled.
Thus, the correct answer will be option D.
Note:A charged capacitor stores energy in the electric field between the plates. The electric field is built up when the capacitor is charged and when it gets disconnected, the energy remains in the field in between the plates.
Formula Used:In this solution we will be using the following formula,
$E = \dfrac{{{Q^2}}}{{2C}}$
where $E$ is the energy of the condenser,
$Q$ is the charge on the condenser and
$C$ is the capacitance.
Complete Step by Step Solution:
The energy stored in a capacitor is the potential energy that is related to the voltage and charge on the capacitor. If the capacitance of a capacitor is given $C$ and the charge in it is given $Q$, where $V$ is the voltage across the plates, then the energy of the capacitor is given by the formula,
$E = \dfrac{1}{2}C{V^2}$
Now, for a capacitor, $Q = CV$
So we can replace the $V$ from the energy term by,
$V = \dfrac{Q}{C}$
So we get energy as,
$\Rightarrow E = \dfrac{1}{2}C\dfrac{{{Q^2}}}{{{C^2}}}$
So cancelling the $C$ from numerator and denominator, we get
$\Rightarrow E = \dfrac{{{Q^2}}}{{2C}}$
So from this formula we can see that the energy is proportional to the square of the charge.
Now in the question we are given that the charge in the capacitor is doubled. So the value of the capacitance is the same in both cases.
$\Rightarrow E \propto {Q^2}$
Therefore when the charge gets doubled,
$\Rightarrow E \propto {\left( {2Q} \right)^2}$
This gives us,
$\Rightarrow E \propto 4{Q^2}$
Therefore we can see that the energy becomes four times when the charge gets doubled.
Thus, the correct answer will be option D.
Note:A charged capacitor stores energy in the electric field between the plates. The electric field is built up when the capacitor is charged and when it gets disconnected, the energy remains in the field in between the plates.
Recently Updated Pages
Wheatstone Bridge Explained: Working, Formula & Uses

Young’s Double Slit Experiment Derivation Explained

Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Equation of Trajectory in Projectile Motion: Derivation & Proof

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Hybridisation in Chemistry – Concept, Types & Applications

Angle of Deviation in a Prism – Formula, Diagram & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Collision: Meaning, Types & Examples in Physics

How to Convert a Galvanometer into an Ammeter or Voltmeter

Atomic Structure: Definition, Models, and Examples

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Average and RMS Value in Physics: Formula, Comparison & Application

