Answer
Verified
89.1k+ views
Hint : Since the moment of inertia of the system is changing, Use the conservation of angular momentum and find out the change in angular velocity. By finding change in angular velocity, you will be able to find the change in time period by using the formula $w = \dfrac{{2\pi }}{T}$.
Complete step-by-step answer:
Given, the axis of rotation is being changed from the centre to the tangent.
Let the initial moment of inertia be I.
Let the final moment of inertia be ${I_1}$.
Since the axis of rotation is being changed from centre to the tangent. Hence new moment of inertia by parallel axis theorem we have,
$
{I_1} = {I_{COM}} + m{d^2} \\
\Rightarrow {I_1} = \dfrac{2}{5}M{R^2} + M{R^2} \\
\Rightarrow {I_1} = \dfrac{7}{5}M{R^2} \\
$
Putting the value of I (COM) as we know that moment of inertia of a sphere is $\dfrac{2}{5}M{R^2}$ from the central axis.
Now using the conservation of angular momentum we have,
$L = {L_1}$
$
Iw = {I_1}{w_1} \\
\Rightarrow \dfrac{2}{5}M{R^2}\,w = \dfrac{7}{5}M{R^2}\,{w_1} \\
\Rightarrow {w_1} = \dfrac{2}{7}w \\
$ (putting the values)
Hence Time period becomes,
T = $\dfrac{{2\pi }}{{{w_1}}}$
$\Rightarrow$ T = $\dfrac{{2\pi }}{{\dfrac{2}{7}w}}$
$\Rightarrow$ T = 7 $\times \dfrac{{2\pi }}{w}$
$\Rightarrow$ T = 7 $\times$ 24 (Time period of earth = 24 hours)
$\Rightarrow$ T = 168 hr.
Note
i) We can only apply the law of conservation of angular momentum when there is no external torque acting on a body.
ii) Time period of a geostationary satellite is 24 hours.
Complete step-by-step answer:
Given, the axis of rotation is being changed from the centre to the tangent.
Let the initial moment of inertia be I.
Let the final moment of inertia be ${I_1}$.
Since the axis of rotation is being changed from centre to the tangent. Hence new moment of inertia by parallel axis theorem we have,
$
{I_1} = {I_{COM}} + m{d^2} \\
\Rightarrow {I_1} = \dfrac{2}{5}M{R^2} + M{R^2} \\
\Rightarrow {I_1} = \dfrac{7}{5}M{R^2} \\
$
Putting the value of I (COM) as we know that moment of inertia of a sphere is $\dfrac{2}{5}M{R^2}$ from the central axis.
Now using the conservation of angular momentum we have,
$L = {L_1}$
$
Iw = {I_1}{w_1} \\
\Rightarrow \dfrac{2}{5}M{R^2}\,w = \dfrac{7}{5}M{R^2}\,{w_1} \\
\Rightarrow {w_1} = \dfrac{2}{7}w \\
$ (putting the values)
Hence Time period becomes,
T = $\dfrac{{2\pi }}{{{w_1}}}$
$\Rightarrow$ T = $\dfrac{{2\pi }}{{\dfrac{2}{7}w}}$
$\Rightarrow$ T = 7 $\times \dfrac{{2\pi }}{w}$
$\Rightarrow$ T = 7 $\times$ 24 (Time period of earth = 24 hours)
$\Rightarrow$ T = 168 hr.
Note
i) We can only apply the law of conservation of angular momentum when there is no external torque acting on a body.
ii) Time period of a geostationary satellite is 24 hours.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
A passenger in an aeroplane shall A Never see a rainbow class 12 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Formula for number of images formed by two plane mirrors class 12 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
Velocity of car at t 0 is u moves with a constant acceleration class 11 physics JEE_Main