
If the axis of rotation suddenly becomes tangent at equator of the earth then the periodic time of a geostationary satellite:
A) 48 hrs
B) 96 hrs
C) 24 hrs
D) 84 hrs
Answer
233.1k+ views
Hint : Since the moment of inertia of the system is changing, Use the conservation of angular momentum and find out the change in angular velocity. By finding change in angular velocity, you will be able to find the change in time period by using the formula $w = \dfrac{{2\pi }}{T}$.
Complete step-by-step answer:
Given, the axis of rotation is being changed from the centre to the tangent.
Let the initial moment of inertia be I.
Let the final moment of inertia be ${I_1}$.
Since the axis of rotation is being changed from centre to the tangent. Hence new moment of inertia by parallel axis theorem we have,
$
{I_1} = {I_{COM}} + m{d^2} \\
\Rightarrow {I_1} = \dfrac{2}{5}M{R^2} + M{R^2} \\
\Rightarrow {I_1} = \dfrac{7}{5}M{R^2} \\
$
Putting the value of I (COM) as we know that moment of inertia of a sphere is $\dfrac{2}{5}M{R^2}$ from the central axis.
Now using the conservation of angular momentum we have,
$L = {L_1}$
$
Iw = {I_1}{w_1} \\
\Rightarrow \dfrac{2}{5}M{R^2}\,w = \dfrac{7}{5}M{R^2}\,{w_1} \\
\Rightarrow {w_1} = \dfrac{2}{7}w \\
$ (putting the values)
Hence Time period becomes,
T = $\dfrac{{2\pi }}{{{w_1}}}$
$\Rightarrow$ T = $\dfrac{{2\pi }}{{\dfrac{2}{7}w}}$
$\Rightarrow$ T = 7 $\times \dfrac{{2\pi }}{w}$
$\Rightarrow$ T = 7 $\times$ 24 (Time period of earth = 24 hours)
$\Rightarrow$ T = 168 hr.
Note
i) We can only apply the law of conservation of angular momentum when there is no external torque acting on a body.
ii) Time period of a geostationary satellite is 24 hours.
Complete step-by-step answer:
Given, the axis of rotation is being changed from the centre to the tangent.
Let the initial moment of inertia be I.
Let the final moment of inertia be ${I_1}$.
Since the axis of rotation is being changed from centre to the tangent. Hence new moment of inertia by parallel axis theorem we have,
$
{I_1} = {I_{COM}} + m{d^2} \\
\Rightarrow {I_1} = \dfrac{2}{5}M{R^2} + M{R^2} \\
\Rightarrow {I_1} = \dfrac{7}{5}M{R^2} \\
$
Putting the value of I (COM) as we know that moment of inertia of a sphere is $\dfrac{2}{5}M{R^2}$ from the central axis.
Now using the conservation of angular momentum we have,
$L = {L_1}$
$
Iw = {I_1}{w_1} \\
\Rightarrow \dfrac{2}{5}M{R^2}\,w = \dfrac{7}{5}M{R^2}\,{w_1} \\
\Rightarrow {w_1} = \dfrac{2}{7}w \\
$ (putting the values)
Hence Time period becomes,
T = $\dfrac{{2\pi }}{{{w_1}}}$
$\Rightarrow$ T = $\dfrac{{2\pi }}{{\dfrac{2}{7}w}}$
$\Rightarrow$ T = 7 $\times \dfrac{{2\pi }}{w}$
$\Rightarrow$ T = 7 $\times$ 24 (Time period of earth = 24 hours)
$\Rightarrow$ T = 168 hr.
Note
i) We can only apply the law of conservation of angular momentum when there is no external torque acting on a body.
ii) Time period of a geostationary satellite is 24 hours.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

