If the average life of a person is taken as $100s$, the age of universe on this scale is of order
(A) ${10^{10}}s$
(B) ${10^8}s$
(C) ${10^{17}}s$
(D) ${10^9}s$
Answer
Verified
119.1k+ views
Hint: To solve this question, we need to use the average values of the universe and humans. We have to take the ratio of these two to get the scaling factor of the given scale. Multiplying the given age of humans with the scaling factor will give us the final answer.
Complete step-by-step solution:
We know that the age of the universe is approximately equal to $20$ billion years. So the age of the universe can be written as
${A_U} = 20 \times {10^9}y$
Now, we know that there are $365$ days in a year. So the age of the universe becomes
${A_U} = 20 \times {10^9} \times 365{\text{ days}}$
Now, there are $24$ hours in a day. Therefore the age of the universe now becomes
${A_U} = 20 \times {10^9} \times 365 \times 24h$
Finally, there are a total of $3600$ seconds in an hour. Thus, the age of the universe in seconds is given by
${A_U} = 20 \times {10^9} \times 365 \times 24 \times 3600s$
On solving we get
${A_U} = 6.31 \times {10^{17}}s$........................(1)
Therefore, the age of the universe is of the order of ${10^{17}}s$.
Now, we know that the average life of a person is approximately $79$ years. So the average human life can be written as
${A_H} = 79y$
By carrying out the same conversion as above, we get the average human life in seconds as
${A_H} = 79 \times 365 \times 24 \times 3600s$
On solving we get
${A_H} = 2.49 \times {10^9}s$..........................(2)
Therefore, the average life of a person is of the order of ${10^9}s$.
Now, we calculate the scaling factor of the given scale.
Dividing (1) by (2) we get
$\dfrac{{{A_U}}}{{{A_H}}} = 2.53 \times {10^8}$
As we are only considering the order of the age, so we consider the order of this ratio. Therefore we get the scaling factor as
$\dfrac{{{A_U}}}{{{A_H}}} = {10^8}$
Now, according to the question, ${A_H} = 100s$. Substituting it above, we get
$\dfrac{{{A_U}}}{{100s}} = {10^8}$
$ \Rightarrow {A_U} = {10^{10}}s$
Therefore, the age of the universe on this scale is of the order ${10^{10}}s$.
Hence, the correct answer is option A.
Note: Even if we do not remember the exact value of the average ages of humans and the universe, we can still attempt this question correctly. We just need to be familiar with the order of the ages, that’s it. From the order only we can get the correct scaling factor, from which the required order of age can be calculated.
Complete step-by-step solution:
We know that the age of the universe is approximately equal to $20$ billion years. So the age of the universe can be written as
${A_U} = 20 \times {10^9}y$
Now, we know that there are $365$ days in a year. So the age of the universe becomes
${A_U} = 20 \times {10^9} \times 365{\text{ days}}$
Now, there are $24$ hours in a day. Therefore the age of the universe now becomes
${A_U} = 20 \times {10^9} \times 365 \times 24h$
Finally, there are a total of $3600$ seconds in an hour. Thus, the age of the universe in seconds is given by
${A_U} = 20 \times {10^9} \times 365 \times 24 \times 3600s$
On solving we get
${A_U} = 6.31 \times {10^{17}}s$........................(1)
Therefore, the age of the universe is of the order of ${10^{17}}s$.
Now, we know that the average life of a person is approximately $79$ years. So the average human life can be written as
${A_H} = 79y$
By carrying out the same conversion as above, we get the average human life in seconds as
${A_H} = 79 \times 365 \times 24 \times 3600s$
On solving we get
${A_H} = 2.49 \times {10^9}s$..........................(2)
Therefore, the average life of a person is of the order of ${10^9}s$.
Now, we calculate the scaling factor of the given scale.
Dividing (1) by (2) we get
$\dfrac{{{A_U}}}{{{A_H}}} = 2.53 \times {10^8}$
As we are only considering the order of the age, so we consider the order of this ratio. Therefore we get the scaling factor as
$\dfrac{{{A_U}}}{{{A_H}}} = {10^8}$
Now, according to the question, ${A_H} = 100s$. Substituting it above, we get
$\dfrac{{{A_U}}}{{100s}} = {10^8}$
$ \Rightarrow {A_U} = {10^{10}}s$
Therefore, the age of the universe on this scale is of the order ${10^{10}}s$.
Hence, the correct answer is option A.
Note: Even if we do not remember the exact value of the average ages of humans and the universe, we can still attempt this question correctly. We just need to be familiar with the order of the ages, that’s it. From the order only we can get the correct scaling factor, from which the required order of age can be calculated.
Recently Updated Pages
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main
What is the difference between Conduction and conv class 11 physics JEE_Main
Mark the correct statements about the friction between class 11 physics JEE_Main
Find the acceleration of the wedge towards the right class 11 physics JEE_Main
A standing wave is formed by the superposition of two class 11 physics JEE_Main
Derive an expression for work done by the gas in an class 11 physics JEE_Main
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs