
If the area of each plate is $A$ and separation between consecutive plates are $d$, then equivalent capacitance between $A$ and $B$, is

$\left( a \right)$ $\dfrac{{3{\varepsilon _0}A}}{{4d}}$
$\left( b \right)$ $\dfrac{{4{\varepsilon _0}A}}{{3d}}$
$\left( c \right)$ $\dfrac{{3{\varepsilon _0}A}}{d}$
$\left( d \right)$ $\dfrac{{2{\varepsilon _0}A}}{{3d}}$
Answer
175.8k+ views
Hint Since it is given that the separation between them is $d$ and also the terminal $B$ is connected between the second and third terminal end of capacitance. So except the first capacitor, all will be in the series. And then they will be in parallel. So solving both of them and we will get the equivalent capacitance.
Formula used:
So if the capacitance is in series,
$\dfrac{1}{c} = \dfrac{1}{{{c_1}}} + \dfrac{1}{{{c_2}}} + .....$
And similarly, if the capacitance is in parallel then
${c_p} = {c_1} + {c_2} + ......$
Complete Step by Step Solution So before solving these types of questions, first of all, we should make the circuit diagram and name them as said in the problem.

Now, when we make the circuit diagram of the above figure, it will look like this

So from this figure, it is clear to us that the $B$terminal is connected between the second and third capacitance. So the capacitance made from the first and second will be parallel to the rest of the capacitance.
With the figure, it will be clearer to us.

So now we will apply the formula for the simplification of series and parallel capacitance.
Firstly${c_{34}}$, ${c_{65}}$and${c_{87}}$all are in series.
So on applying the series formula,
We get
Since all have the same capacitance that is $c$
Therefore,
$ \Rightarrow \dfrac{1}{{{c_{series}}}} = \dfrac{1}{c} + \dfrac{1}{c} + \dfrac{1}{c}$
Now on adding and solving the above equation, we get
$ \Rightarrow {c_{series}} = \dfrac{c}{3}$
Now the ${c_{12}}$will come in parallel with ${c_{series}}$
Therefore, on solving it, we get
$ \Rightarrow {c_{eq}} = c + \dfrac{c}{3}$
On further simplifying this, we get
$ \Rightarrow {c_{eq}} = \dfrac{{4c}}{3}$
And as we know $c = \dfrac{{{\varepsilon _0}A}}{d}$
Therefore the above equation can be written as
$ \Rightarrow {c_{eq}} = \dfrac{4}{3}\dfrac{{{\varepsilon _0}A}}{d}$
Therefore the option $B$ is correct.
Note In the Series circuit there is only one path for electrons to flow. Only one current. In parallel circuits you have more than one path for electrons to flow through, thereby you have different currents that you want to use for different purposes. From the point of view of the voltage, in parallel circuits, it is the same voltage level for elements connected in parallel mode (remember that voltage is a level of electric potential, not a flow like the current).
Formula used:
So if the capacitance is in series,
$\dfrac{1}{c} = \dfrac{1}{{{c_1}}} + \dfrac{1}{{{c_2}}} + .....$
And similarly, if the capacitance is in parallel then
${c_p} = {c_1} + {c_2} + ......$
Complete Step by Step Solution So before solving these types of questions, first of all, we should make the circuit diagram and name them as said in the problem.

Now, when we make the circuit diagram of the above figure, it will look like this

So from this figure, it is clear to us that the $B$terminal is connected between the second and third capacitance. So the capacitance made from the first and second will be parallel to the rest of the capacitance.
With the figure, it will be clearer to us.

So now we will apply the formula for the simplification of series and parallel capacitance.
Firstly${c_{34}}$, ${c_{65}}$and${c_{87}}$all are in series.
So on applying the series formula,
We get
Since all have the same capacitance that is $c$
Therefore,
$ \Rightarrow \dfrac{1}{{{c_{series}}}} = \dfrac{1}{c} + \dfrac{1}{c} + \dfrac{1}{c}$
Now on adding and solving the above equation, we get
$ \Rightarrow {c_{series}} = \dfrac{c}{3}$
Now the ${c_{12}}$will come in parallel with ${c_{series}}$
Therefore, on solving it, we get
$ \Rightarrow {c_{eq}} = c + \dfrac{c}{3}$
On further simplifying this, we get
$ \Rightarrow {c_{eq}} = \dfrac{{4c}}{3}$
And as we know $c = \dfrac{{{\varepsilon _0}A}}{d}$
Therefore the above equation can be written as
$ \Rightarrow {c_{eq}} = \dfrac{4}{3}\dfrac{{{\varepsilon _0}A}}{d}$
Therefore the option $B$ is correct.
Note In the Series circuit there is only one path for electrons to flow. Only one current. In parallel circuits you have more than one path for electrons to flow through, thereby you have different currents that you want to use for different purposes. From the point of view of the voltage, in parallel circuits, it is the same voltage level for elements connected in parallel mode (remember that voltage is a level of electric potential, not a flow like the current).
Recently Updated Pages
JEE Main Physics Mock Test 2025

JEE Main Maths Mock Test 2025: FREE Online Mock Test Series

JEE Main Chemistry Mock Test 2025

JEE Main 2025-26 Atoms and Nuclei Mock Test: Free Practice Online

JEE Main 2025-26: Dual Nature of Matter and Radiation Mock Test

JEE Main 2025-26 Electronic Devices Mock Test – Free Practice

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Uniform Acceleration

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

What is Hybridisation in Chemistry?

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Essential Derivations for CBSE Class 12 Physics: Stepwise & PDF Solutions
