
If the amplitude of \[z - 2 - 3i\;\] is \[\dfrac{\pi }{4}\], then the locus of \[z = x + iy\] is [EAMCET\[2003\]]
A) \[x + y - 1 = 0\]
B) \[x - y - 1 = 0\]
C) \[x + y + 1 = 0\]
D) \[x - y + 1 = 0\]
Answer
162.3k+ views
Hint: in this question we have to find locus of the point \[z\] which satisfy the given condition. First write the given complex number as a combination of real and imaginary number. Amplitude is same as argument. Then apply formula for argument.
Formula Used:Equation of complex number is given by
\[z = x + iy\]
Where
z is a complex number
x represent real part of complex number
iy is a imaginary part of complex number
i is iota
Square of iota is equal to the negative of one
\[\arg (z) = {\tan ^{ - 1}}(\dfrac{y}{x})\]
Complete step by step solution:Given: Amplitude of complex number is given
Now we have amplitude which is equal to\[z - 2 - 3i\;\]
We know that complex number is written as a combination of real and imaginary number.
\[z = x + iy\]
Where
z is a complex number
x represent real part of complex number
iy is a imaginary part of complex number
Put this value in\[z - 2 - 3i\;\]
\[x + iy - 2 - 3i\;\]
\[x + iy - 2 - 3i\; = (x - 2) + i(y - 3)\]
\[\arg (z) = {\tan ^{ - 1}}(\dfrac{y}{x})\]
It is given in the question that amplitude is equal to\[\dfrac{\pi }{4}\]
\[{\tan ^{ - 1}} = \dfrac{{y - 3}}{{x - 2}} = \dfrac{\pi }{4}\]
\[\tan \dfrac{\pi }{4} = \dfrac{{y - 3}}{{x - 2}}\]
We know that
\[\tan \dfrac{\pi }{4} = 1\]
\[\dfrac{{y - 3}}{{x - 2}} = 1\]
\[y - 3 = x - 2\]
Now locus is given by
\[x - y + 1 = 0\]
Option ‘A’ is correct
Note: Here we have to remember that amplitude is equal to argument. Complex number is a number which is a combination of real and imaginary number. So in combination number question we have to represent number as a combination of real and its imaginary part. Imaginary part is known as iota. Square of iota is equal to negative one.
Formula Used:Equation of complex number is given by
\[z = x + iy\]
Where
z is a complex number
x represent real part of complex number
iy is a imaginary part of complex number
i is iota
Square of iota is equal to the negative of one
\[\arg (z) = {\tan ^{ - 1}}(\dfrac{y}{x})\]
Complete step by step solution:Given: Amplitude of complex number is given
Now we have amplitude which is equal to\[z - 2 - 3i\;\]
We know that complex number is written as a combination of real and imaginary number.
\[z = x + iy\]
Where
z is a complex number
x represent real part of complex number
iy is a imaginary part of complex number
Put this value in\[z - 2 - 3i\;\]
\[x + iy - 2 - 3i\;\]
\[x + iy - 2 - 3i\; = (x - 2) + i(y - 3)\]
\[\arg (z) = {\tan ^{ - 1}}(\dfrac{y}{x})\]
It is given in the question that amplitude is equal to\[\dfrac{\pi }{4}\]
\[{\tan ^{ - 1}} = \dfrac{{y - 3}}{{x - 2}} = \dfrac{\pi }{4}\]
\[\tan \dfrac{\pi }{4} = \dfrac{{y - 3}}{{x - 2}}\]
We know that
\[\tan \dfrac{\pi }{4} = 1\]
\[\dfrac{{y - 3}}{{x - 2}} = 1\]
\[y - 3 = x - 2\]
Now locus is given by
\[x - y + 1 = 0\]
Option ‘A’ is correct
Note: Here we have to remember that amplitude is equal to argument. Complex number is a number which is a combination of real and imaginary number. So in combination number question we have to represent number as a combination of real and its imaginary part. Imaginary part is known as iota. Square of iota is equal to negative one.
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

How To Find Mean Deviation For Ungrouped Data

Difference Between Molecule and Compound: JEE Main 2024

Ammonium Hydroxide Formula - Chemical, Molecular Formula and Uses

Difference Between Area and Surface Area: JEE Main 2024

Difference Between Work and Power: JEE Main 2024

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

1 Billion in Rupees

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE
