
If temperature of sun is decreased by \[1\% \] then the value of solar constant will change by
(A) \[2\% \]
(B) \[ - 4\% \]
(C) \[ - 2\% \]
(D) \[4\% \]
Answer
124.8k+ views
Hint Solar constant is proportional to fourth power of temperature so find the final solar constant in terms of initial solar constant. Substitute in the percentage increase formula to calculate the change in solar constant.
Complete step-by-step solution:
The solar constant is given by
$S = {T^4}\sigma {\left( {\dfrac{R}{r}} \right)^2}$
From, this we know that
$S \propto {T^4}$
So, let \[{S_1}\] and \[{S_2}\] be the initial and final state of the solar constant at temperatures \[{T_1}\] and \[{T_2}\] respectively.
\[{T_1} = {\text{ }}tK\]
\[{T_2} = {\text{ }}t - {\text{ }}1\% = 0.99{\text{ }}K\]
Using the temperature and solar constant relation,
\[
\dfrac{{{S_1}}}{{{S_2}}} = \dfrac{{{T_1}^4}}{{{T_2}^4}} \\
{S_2} = \dfrac{{{{(0.99t)}^4} \times {S_1}}}{{{t^4}}} \\
{S_2} = 0.96{S_1} \\
\]
Now, the percentage increase in the solar constant is given by,
$
S = \dfrac{{{S_2} - {S_1}}}{{{S_1}}} \times 100 \\
S = \dfrac{{0.96{S_1} - {S_1}}}{{{S_1}}} \times 100 \\
S = - 0.0394 \times 100 \\
S = - 3.94\% \simeq - 4\% \\
$
Hence, the change in solar constant is by \[ - 4\% \] and the correct option is B.
Note
The solar constant depends on temperature and the surface area. The value of the constant is approximately equally \[1.366{\text{ }}kW{m^{ - 2}}\]. This constant increases by around \[0.2\% \] for each 11 year solar cycle.
Complete step-by-step solution:
The solar constant is given by
$S = {T^4}\sigma {\left( {\dfrac{R}{r}} \right)^2}$
From, this we know that
$S \propto {T^4}$
So, let \[{S_1}\] and \[{S_2}\] be the initial and final state of the solar constant at temperatures \[{T_1}\] and \[{T_2}\] respectively.
\[{T_1} = {\text{ }}tK\]
\[{T_2} = {\text{ }}t - {\text{ }}1\% = 0.99{\text{ }}K\]
Using the temperature and solar constant relation,
\[
\dfrac{{{S_1}}}{{{S_2}}} = \dfrac{{{T_1}^4}}{{{T_2}^4}} \\
{S_2} = \dfrac{{{{(0.99t)}^4} \times {S_1}}}{{{t^4}}} \\
{S_2} = 0.96{S_1} \\
\]
Now, the percentage increase in the solar constant is given by,
$
S = \dfrac{{{S_2} - {S_1}}}{{{S_1}}} \times 100 \\
S = \dfrac{{0.96{S_1} - {S_1}}}{{{S_1}}} \times 100 \\
S = - 0.0394 \times 100 \\
S = - 3.94\% \simeq - 4\% \\
$
Hence, the change in solar constant is by \[ - 4\% \] and the correct option is B.
Note

The solar constant depends on temperature and the surface area. The value of the constant is approximately equally \[1.366{\text{ }}kW{m^{ - 2}}\]. This constant increases by around \[0.2\% \] for each 11 year solar cycle.
Recently Updated Pages
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main

What is the difference between Conduction and conv class 11 physics JEE_Main

Mark the correct statements about the friction between class 11 physics JEE_Main

Find the acceleration of the wedge towards the right class 11 physics JEE_Main

A standing wave is formed by the superposition of two class 11 physics JEE_Main

Derive an expression for work done by the gas in an class 11 physics JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main Login 2045: Step-by-Step Instructions and Details

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
