
If $ta{n^{ - 1}}\;\left( {tan \left( {\dfrac{{5\pi }}{4}} \right)} \right) = \alpha , ta{n^{ - 1}}\;\left( { - tan \left( {\dfrac{{2\pi }}{3}} \right)} \right) = \beta , $then which of the following holds.
A. $4\alpha - 4\beta = 0$
B. $4\alpha - 3\beta = 0$
C. $ \alpha > \beta $
D. None of these
Answer
162.6k+ views
Hint: We will evaluate the given trigonometric function to obtain the value of $\alpha $and $\beta $. Then substitute the obtained values one by one in all the given options to determine which option holds the values of the given trigonometric function.
Formula Used:
The property of inverse trigonometric function used $ta{n^{ - 1}}\;\left( {tan x} \right) = x$
The value of the trigonometric function is obtained in the first quadrant by adding or subtracting the angle by π. As shown below
${\alpha = ta{n^{ - 1}}\;\left( {tan \left( {\dfrac{{5\pi }}{4}\;} \right)} \right)}$
$\alpha \:\:=\:\:tan^{\:-\:1}\left(tan\:\left(\:\pi \:\:\:+\:\:\left(\:\dfrac{\pi \:}{4}\:\right)\:\right)\right)$
$\alpha \:\:=\:\:tan^{\:-\:1}\left(\:tan\dfrac{\pi \:}{4}\:\right)$
Complete step by step solution:
The given trigonometric function:
$\alpha = ta{n^{ - 1}}\;\left( {tan \left( {\dfrac{{5\pi }}{4}\;} \right)} \right)$
Evaluate the trigonometric angle to the first quadrant:
$\alpha = ta{n^{ - 1}}\;(tan \left( {\pi + \left( {\dfrac{\pi }{4}} \right)} \right)$
Evaluating the angle further, we get
$\alpha = ta{n^{ - 1}}\;\left( {tan\dfrac{\pi }{4}} \right)$
So, the value of $\alpha $will be:
$\alpha = \dfrac{\pi }{4}$
Now, on similarly determine the value of $\beta $
The given trigonometric function:
$\beta = ta{n^{ - 1}}\;\left( { - tan \left( {\dfrac{{2\pi }}{3}} \right)} \right)$
Evaluate the trigonometric angle to the first quadrant:
$\beta = ta{n^{ - 1}}\;( - tan \left( {\pi - \left( {\dfrac{\pi }{3}} \right)} \right)$
Evaluating the angle further, we get
$\beta = ta{n^{ - 1}}\;\left( {tan \left( {\dfrac{\pi }{3}} \right)} \right)$
So, the value of $\beta $will be:
$\beta = \left( {\dfrac{\pi }{3}} \right)$
Since the value of $\alpha $and $\beta $ are known, we will substitute the values in the option to determine which of the options holds good for given trigonometric function.
Substitute the values of $\alpha $and $\beta $ in option A that is $4\alpha - 4\beta = 0$, we get
$4\left( {\dfrac{\pi }{4}} \right) -{{ 4}}\left( {\dfrac{\pi }{3}} \right) \ne 0$
So, the option A does not hold for the given trigonometric function.
Now substitute the values of $\alpha $ and $\beta $ in option B that is $4\alpha - 3\beta = 0$, we get, $4\left( {\dfrac{\pi }{4}} \right) - 3\left( {\dfrac{\pi }{3}} \right) = 0$
So, option B does not hold for the given trigonometric function.
Now substitute the values of $\alpha $ and $\beta $ in option C that is $ \alpha > \beta $, we get
$\left( {\dfrac{\pi }{4}} \right){{ < }}\left( {\dfrac{\pi }{3}} \right) $
So, the option C does not hold for the given trigonometric function.
Option ‘B’ is correct
Note: One can make a mistake in substituting the values of $\alpha $ and $\beta $. This problem can also be solved by directly putting the trigonometric function in the option and then evaluating it.
Formula Used:
The property of inverse trigonometric function used $ta{n^{ - 1}}\;\left( {tan x} \right) = x$
The value of the trigonometric function is obtained in the first quadrant by adding or subtracting the angle by π. As shown below
${\alpha = ta{n^{ - 1}}\;\left( {tan \left( {\dfrac{{5\pi }}{4}\;} \right)} \right)}$
$\alpha \:\:=\:\:tan^{\:-\:1}\left(tan\:\left(\:\pi \:\:\:+\:\:\left(\:\dfrac{\pi \:}{4}\:\right)\:\right)\right)$
$\alpha \:\:=\:\:tan^{\:-\:1}\left(\:tan\dfrac{\pi \:}{4}\:\right)$
Complete step by step solution:
The given trigonometric function:
$\alpha = ta{n^{ - 1}}\;\left( {tan \left( {\dfrac{{5\pi }}{4}\;} \right)} \right)$
Evaluate the trigonometric angle to the first quadrant:
$\alpha = ta{n^{ - 1}}\;(tan \left( {\pi + \left( {\dfrac{\pi }{4}} \right)} \right)$
Evaluating the angle further, we get
$\alpha = ta{n^{ - 1}}\;\left( {tan\dfrac{\pi }{4}} \right)$
So, the value of $\alpha $will be:
$\alpha = \dfrac{\pi }{4}$
Now, on similarly determine the value of $\beta $
The given trigonometric function:
$\beta = ta{n^{ - 1}}\;\left( { - tan \left( {\dfrac{{2\pi }}{3}} \right)} \right)$
Evaluate the trigonometric angle to the first quadrant:
$\beta = ta{n^{ - 1}}\;( - tan \left( {\pi - \left( {\dfrac{\pi }{3}} \right)} \right)$
Evaluating the angle further, we get
$\beta = ta{n^{ - 1}}\;\left( {tan \left( {\dfrac{\pi }{3}} \right)} \right)$
So, the value of $\beta $will be:
$\beta = \left( {\dfrac{\pi }{3}} \right)$
Since the value of $\alpha $and $\beta $ are known, we will substitute the values in the option to determine which of the options holds good for given trigonometric function.
Substitute the values of $\alpha $and $\beta $ in option A that is $4\alpha - 4\beta = 0$, we get
$4\left( {\dfrac{\pi }{4}} \right) -{{ 4}}\left( {\dfrac{\pi }{3}} \right) \ne 0$
So, the option A does not hold for the given trigonometric function.
Now substitute the values of $\alpha $ and $\beta $ in option B that is $4\alpha - 3\beta = 0$, we get, $4\left( {\dfrac{\pi }{4}} \right) - 3\left( {\dfrac{\pi }{3}} \right) = 0$
So, option B does not hold for the given trigonometric function.
Now substitute the values of $\alpha $ and $\beta $ in option C that is $ \alpha > \beta $, we get
$\left( {\dfrac{\pi }{4}} \right){{ < }}\left( {\dfrac{\pi }{3}} \right) $
So, the option C does not hold for the given trigonometric function.
Option ‘B’ is correct
Note: One can make a mistake in substituting the values of $\alpha $ and $\beta $. This problem can also be solved by directly putting the trigonometric function in the option and then evaluating it.
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

1 Billion in Rupees

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE
