
If $ta{n^{ - 1}}\;\left( {tan \left( {\dfrac{{5\pi }}{4}} \right)} \right) = \alpha , ta{n^{ - 1}}\;\left( { - tan \left( {\dfrac{{2\pi }}{3}} \right)} \right) = \beta , $then which of the following holds.
A. $4\alpha - 4\beta = 0$
B. $4\alpha - 3\beta = 0$
C. $ \alpha > \beta $
D. None of these
Answer
232.8k+ views
Hint: We will evaluate the given trigonometric function to obtain the value of $\alpha $and $\beta $. Then substitute the obtained values one by one in all the given options to determine which option holds the values of the given trigonometric function.
Formula Used:
The property of inverse trigonometric function used $ta{n^{ - 1}}\;\left( {tan x} \right) = x$
The value of the trigonometric function is obtained in the first quadrant by adding or subtracting the angle by π. As shown below
${\alpha = ta{n^{ - 1}}\;\left( {tan \left( {\dfrac{{5\pi }}{4}\;} \right)} \right)}$
$\alpha \:\:=\:\:tan^{\:-\:1}\left(tan\:\left(\:\pi \:\:\:+\:\:\left(\:\dfrac{\pi \:}{4}\:\right)\:\right)\right)$
$\alpha \:\:=\:\:tan^{\:-\:1}\left(\:tan\dfrac{\pi \:}{4}\:\right)$
Complete step by step solution:
The given trigonometric function:
$\alpha = ta{n^{ - 1}}\;\left( {tan \left( {\dfrac{{5\pi }}{4}\;} \right)} \right)$
Evaluate the trigonometric angle to the first quadrant:
$\alpha = ta{n^{ - 1}}\;(tan \left( {\pi + \left( {\dfrac{\pi }{4}} \right)} \right)$
Evaluating the angle further, we get
$\alpha = ta{n^{ - 1}}\;\left( {tan\dfrac{\pi }{4}} \right)$
So, the value of $\alpha $will be:
$\alpha = \dfrac{\pi }{4}$
Now, on similarly determine the value of $\beta $
The given trigonometric function:
$\beta = ta{n^{ - 1}}\;\left( { - tan \left( {\dfrac{{2\pi }}{3}} \right)} \right)$
Evaluate the trigonometric angle to the first quadrant:
$\beta = ta{n^{ - 1}}\;( - tan \left( {\pi - \left( {\dfrac{\pi }{3}} \right)} \right)$
Evaluating the angle further, we get
$\beta = ta{n^{ - 1}}\;\left( {tan \left( {\dfrac{\pi }{3}} \right)} \right)$
So, the value of $\beta $will be:
$\beta = \left( {\dfrac{\pi }{3}} \right)$
Since the value of $\alpha $and $\beta $ are known, we will substitute the values in the option to determine which of the options holds good for given trigonometric function.
Substitute the values of $\alpha $and $\beta $ in option A that is $4\alpha - 4\beta = 0$, we get
$4\left( {\dfrac{\pi }{4}} \right) -{{ 4}}\left( {\dfrac{\pi }{3}} \right) \ne 0$
So, the option A does not hold for the given trigonometric function.
Now substitute the values of $\alpha $ and $\beta $ in option B that is $4\alpha - 3\beta = 0$, we get, $4\left( {\dfrac{\pi }{4}} \right) - 3\left( {\dfrac{\pi }{3}} \right) = 0$
So, option B does not hold for the given trigonometric function.
Now substitute the values of $\alpha $ and $\beta $ in option C that is $ \alpha > \beta $, we get
$\left( {\dfrac{\pi }{4}} \right){{ < }}\left( {\dfrac{\pi }{3}} \right) $
So, the option C does not hold for the given trigonometric function.
Option ‘B’ is correct
Note: One can make a mistake in substituting the values of $\alpha $ and $\beta $. This problem can also be solved by directly putting the trigonometric function in the option and then evaluating it.
Formula Used:
The property of inverse trigonometric function used $ta{n^{ - 1}}\;\left( {tan x} \right) = x$
The value of the trigonometric function is obtained in the first quadrant by adding or subtracting the angle by π. As shown below
${\alpha = ta{n^{ - 1}}\;\left( {tan \left( {\dfrac{{5\pi }}{4}\;} \right)} \right)}$
$\alpha \:\:=\:\:tan^{\:-\:1}\left(tan\:\left(\:\pi \:\:\:+\:\:\left(\:\dfrac{\pi \:}{4}\:\right)\:\right)\right)$
$\alpha \:\:=\:\:tan^{\:-\:1}\left(\:tan\dfrac{\pi \:}{4}\:\right)$
Complete step by step solution:
The given trigonometric function:
$\alpha = ta{n^{ - 1}}\;\left( {tan \left( {\dfrac{{5\pi }}{4}\;} \right)} \right)$
Evaluate the trigonometric angle to the first quadrant:
$\alpha = ta{n^{ - 1}}\;(tan \left( {\pi + \left( {\dfrac{\pi }{4}} \right)} \right)$
Evaluating the angle further, we get
$\alpha = ta{n^{ - 1}}\;\left( {tan\dfrac{\pi }{4}} \right)$
So, the value of $\alpha $will be:
$\alpha = \dfrac{\pi }{4}$
Now, on similarly determine the value of $\beta $
The given trigonometric function:
$\beta = ta{n^{ - 1}}\;\left( { - tan \left( {\dfrac{{2\pi }}{3}} \right)} \right)$
Evaluate the trigonometric angle to the first quadrant:
$\beta = ta{n^{ - 1}}\;( - tan \left( {\pi - \left( {\dfrac{\pi }{3}} \right)} \right)$
Evaluating the angle further, we get
$\beta = ta{n^{ - 1}}\;\left( {tan \left( {\dfrac{\pi }{3}} \right)} \right)$
So, the value of $\beta $will be:
$\beta = \left( {\dfrac{\pi }{3}} \right)$
Since the value of $\alpha $and $\beta $ are known, we will substitute the values in the option to determine which of the options holds good for given trigonometric function.
Substitute the values of $\alpha $and $\beta $ in option A that is $4\alpha - 4\beta = 0$, we get
$4\left( {\dfrac{\pi }{4}} \right) -{{ 4}}\left( {\dfrac{\pi }{3}} \right) \ne 0$
So, the option A does not hold for the given trigonometric function.
Now substitute the values of $\alpha $ and $\beta $ in option B that is $4\alpha - 3\beta = 0$, we get, $4\left( {\dfrac{\pi }{4}} \right) - 3\left( {\dfrac{\pi }{3}} \right) = 0$
So, option B does not hold for the given trigonometric function.
Now substitute the values of $\alpha $ and $\beta $ in option C that is $ \alpha > \beta $, we get
$\left( {\dfrac{\pi }{4}} \right){{ < }}\left( {\dfrac{\pi }{3}} \right) $
So, the option C does not hold for the given trigonometric function.
Option ‘B’ is correct
Note: One can make a mistake in substituting the values of $\alpha $ and $\beta $. This problem can also be solved by directly putting the trigonometric function in the option and then evaluating it.
Recently Updated Pages
The area of an expanding rectangle is increasing at class 12 maths JEE_Main

If y xxx cdots infty then find dfracdydx A yxy 1 B class 12 maths JEE_Main

Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Inductive Effect and Its Role in Acidic Strength

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

