
If $T$ is surface temperature of sun, $R$ is the radius of sun, $r$ is radius of earth’s orbit and $S$ is solar constant, then total radiant energy of sun per unit time from the sphere of radius $r,$ then
(A) $\pi {{r}^{2}}S$
( B) $4\pi {{r}^{2}}S$
(C) $\sigma \dfrac{4}{3}\pi {{R}^{3}}{{T}^{4}}$
(D) $\sigma 4\pi {{r}^{2}}{{T}^{4}}$
Answer
233.1k+ views
Hint to calculate here, the total radiant energy of sun per unit time(from sphere of radius $r$ ) ,we can use here the Stefan’s-Boltzmann law.
It states that total energy radiated per unit surface area of the black body across all wavelengths per unit time, is directly proportional to the fourth power of the blackbody’s thermodynamic temperature $T$.
Formula used
\[\text{Energy radiated per unit surface area per unit time}=\sigma {{T}^{4}}\times 4\pi {{r}^{2}}\]
Complete step by step solution : Using Stefan’s Boltzmann law.
\[\text{Energy radiated per unit surface area per unit time}=\sigma {{T}^{4}}\]
Where $\sigma $ is Stefan’s Boltzmann constant
Here, surface area of earth$=4\pi {{r}^{2}}$
Thus, total energy radiated per unit time,
$L=\sigma {{T}^{4}}\times 4\pi {{r}^{2}}$
Thus, option (d) is correct.
Additional information
Blackbody, in physics, a surface that absorbs all radiant energy falling on it. The term arises because incident visible light will be absorbed rather than reflected, and therefore the surface will appear black. The concept of such a perfect absorber of energy is extremely useful in the study of radiation phenomena.
Note: Learn the formula and statement of Stefan’s Boltzmann law. Learn the value of the Stefan’s Boltzmann constant as well, to be used in numerical problems.
It is derived from other known constants. The value of constant is:
\[\begin{align}
& \sigma =\dfrac{2{{\pi }^{5}}{{k}^{4}}}{15{{c}^{2}}{{h}^{3}}}=5\cdot 670373\times {{10}^{-8}}\text{ }W{{m}^{-2}}{{k}^{-4}} \\
& k:\text{Boltzmann constant} \\
& h:\text{Plank }\!\!'\!\!\text{ s constant} \\
& c:\text{speed of light in a vacuum} \\
\end{align}\]
It states that total energy radiated per unit surface area of the black body across all wavelengths per unit time, is directly proportional to the fourth power of the blackbody’s thermodynamic temperature $T$.
Formula used
\[\text{Energy radiated per unit surface area per unit time}=\sigma {{T}^{4}}\times 4\pi {{r}^{2}}\]
Complete step by step solution : Using Stefan’s Boltzmann law.
\[\text{Energy radiated per unit surface area per unit time}=\sigma {{T}^{4}}\]
Where $\sigma $ is Stefan’s Boltzmann constant
Here, surface area of earth$=4\pi {{r}^{2}}$
Thus, total energy radiated per unit time,
$L=\sigma {{T}^{4}}\times 4\pi {{r}^{2}}$
Thus, option (d) is correct.
Additional information
Blackbody, in physics, a surface that absorbs all radiant energy falling on it. The term arises because incident visible light will be absorbed rather than reflected, and therefore the surface will appear black. The concept of such a perfect absorber of energy is extremely useful in the study of radiation phenomena.
Note: Learn the formula and statement of Stefan’s Boltzmann law. Learn the value of the Stefan’s Boltzmann constant as well, to be used in numerical problems.
It is derived from other known constants. The value of constant is:
\[\begin{align}
& \sigma =\dfrac{2{{\pi }^{5}}{{k}^{4}}}{15{{c}^{2}}{{h}^{3}}}=5\cdot 670373\times {{10}^{-8}}\text{ }W{{m}^{-2}}{{k}^{-4}} \\
& k:\text{Boltzmann constant} \\
& h:\text{Plank }\!\!'\!\!\text{ s constant} \\
& c:\text{speed of light in a vacuum} \\
\end{align}\]
Recently Updated Pages
JEE Main 2026 Session 2 Registration Open, Exam Dates, Syllabus & Eligibility

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
Understanding Average and RMS Value in Electrical Circuits

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Atomic Structure for Beginners

Derive an expression for maximum speed of a car on class 11 physics JEE_Main

Understanding Elastic Collisions in Two Dimensions

Class 11 JEE Main Physics Mock Test 2025

Other Pages
NCERT Solutions For Class 11 Physics Chapter 10 Thermal Properties of Matter (2025-26)

NCERT Solutions For Class 11 Physics Chapter 12 Kinetic Theory (2025-26)

Understanding Collisions: Types and Examples for Students

Define thermal expansion for alpha beta and gamma A class 11 physics JEE_Main

Happy New Year Wishes 2026 – 100+ Messages, Quotes, Shayari, Images & Status in All Languages

Valentine Week 2026 List | Valentine Week Days, Dates & Meaning

