
If r satisfies the equation $r \times \left( {i + 2j + k} \right) = i - k$, then for any scalar $\alpha $, r is equal to
\[
A.{\text{ }}i + \alpha \left( {i + 2j + k} \right) \\
B.{\text{ j}} + \alpha \left( {i + 2j + k} \right) \\
C.{\text{ k}} + \alpha \left( {i + 2j + k} \right) \\
D.{\text{ }}i - k + \alpha \left( {i + 2j + k} \right) \\
\]
Answer
233.1k+ views
Hint: In this question assume $r = \alpha i + \beta j + \lambda k$ and then apply a cross product to reach the solution of the problem.
Complete step-by-step answer:
Let $r = \alpha i + \beta j + \lambda k$…………….. (1)
Now given equation is
$r \times \left( {i + 2j + k} \right) = i - k$
So, first find out the value of
$r \times \left( {i + 2j + k} \right)$
$ \Rightarrow r \times \left( {i + 2j + k} \right) = \left( {\alpha i + \beta j + \lambda k} \right) \times \left( {i + 2j + k} \right)$
Now, apply cross product property we have,
$ \Rightarrow r \times \left( {i + 2j + k} \right) = \left| {\begin{array}{*{20}{c}}
i&j&k \\
\alpha &\beta &\lambda \\
1&2&1
\end{array}} \right| = i\left( {\beta - 2\lambda } \right) - j\left( {\alpha - \lambda } \right) + k\left( {2\alpha - \beta } \right)$
Now the above value is equal to
$i\left( {\beta - 2\lambda } \right) - j\left( {\alpha - \lambda } \right) + k\left( {2\alpha - \beta } \right) = i - k$
So on comparing the terms $i,{\text{ j, k}}$ we have
$\left( {\beta - 2\lambda } \right)$ = 1, $\left( {\alpha - \lambda } \right)$ = 0, $\left( {2\alpha - \beta } \right)$ = -1
$ \Rightarrow \beta = 1 + 2\lambda ,{\text{ }}\alpha = \lambda ,{\text{ }}\beta = 1 + 2\alpha $
So, from equation (1) we have,
$r = \alpha i + \beta j + \lambda k$, substitute the value of $\beta $ and $\lambda $ in this equation we have,
$ \Rightarrow r = \alpha i + \left( {1 + 2\alpha } \right)j + \alpha k$
$ \Rightarrow r = j + \alpha \left( {i + 2j + k} \right)$, for any scalar $\alpha $.
Hence, option (b) is correct.
Note: In such types of questions first assume r as above then apply cross product as above, then compare the value of cross product with the given value and find out the values of $\alpha ,{\text{ }}\beta {\text{, }}\lambda $, then substitute the value of $\beta $ and $\lambda $in terms of $\alpha $ in r we will get the required r for any scaler $\alpha $.
Complete step-by-step answer:
Let $r = \alpha i + \beta j + \lambda k$…………….. (1)
Now given equation is
$r \times \left( {i + 2j + k} \right) = i - k$
So, first find out the value of
$r \times \left( {i + 2j + k} \right)$
$ \Rightarrow r \times \left( {i + 2j + k} \right) = \left( {\alpha i + \beta j + \lambda k} \right) \times \left( {i + 2j + k} \right)$
Now, apply cross product property we have,
$ \Rightarrow r \times \left( {i + 2j + k} \right) = \left| {\begin{array}{*{20}{c}}
i&j&k \\
\alpha &\beta &\lambda \\
1&2&1
\end{array}} \right| = i\left( {\beta - 2\lambda } \right) - j\left( {\alpha - \lambda } \right) + k\left( {2\alpha - \beta } \right)$
Now the above value is equal to
$i\left( {\beta - 2\lambda } \right) - j\left( {\alpha - \lambda } \right) + k\left( {2\alpha - \beta } \right) = i - k$
So on comparing the terms $i,{\text{ j, k}}$ we have
$\left( {\beta - 2\lambda } \right)$ = 1, $\left( {\alpha - \lambda } \right)$ = 0, $\left( {2\alpha - \beta } \right)$ = -1
$ \Rightarrow \beta = 1 + 2\lambda ,{\text{ }}\alpha = \lambda ,{\text{ }}\beta = 1 + 2\alpha $
So, from equation (1) we have,
$r = \alpha i + \beta j + \lambda k$, substitute the value of $\beta $ and $\lambda $ in this equation we have,
$ \Rightarrow r = \alpha i + \left( {1 + 2\alpha } \right)j + \alpha k$
$ \Rightarrow r = j + \alpha \left( {i + 2j + k} \right)$, for any scalar $\alpha $.
Hence, option (b) is correct.
Note: In such types of questions first assume r as above then apply cross product as above, then compare the value of cross product with the given value and find out the values of $\alpha ,{\text{ }}\beta {\text{, }}\lambda $, then substitute the value of $\beta $ and $\lambda $in terms of $\alpha $ in r we will get the required r for any scaler $\alpha $.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Inductive Effect and Its Role in Acidic Strength

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

