
If one end of a diameter of the circle \[\begin{array}{*{20}{c}}
{{x^2} + {y^2} - 4x - 6y + 11}& = &0
\end{array}\]is (3, 4), then the coordinates of the opposite ends are,
A) (1, 2)
B) (2, 1)
C) (-1, 2)
D) None of these
Answer
216.3k+ views
Hint: Determine the center of the circle with the help of the given equation and then we will apply the formula of the midpoint of the line to evaluate the coordinates of the other end of the circle
Complete step by step solution: First of all, we will draw a figure according to the given conditions,

Figure 1
In this problem, we have to find the coordinates of the other end of the circle. Let us assume that the coordinates of the other end of the circle are C (P, Q). As shown in the figure, the diameter of the circle is line AC. Therefore, the midpoint of line AC is Point O (Center of the circle).
Now from the given equation, we will evaluate the center of the circle. Therefore,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {x^2} + {y^2} - 4x - 6y + 11}& = &0
\end{array}\]
In the above equation, add and subtract 2. So, we will get
\[\begin{array}{*{20}{c}}
{ \Rightarrow {x^2} + {y^2} - 4x - 6y + 9 + 2 - 2}& = &0
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow {x^2} + {y^2} - 4x - 6y + 13}& = &2
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow \left( {{x^2} - 4x + 4} \right) + \left( {{y^2} - 6y + 9} \right)}& = &2
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\left( {x - 2} \right)}^2} + {{\left( {y - 3} \right)}^2}}& = &2
\end{array}\]
Now compare the above equation with the general equation of the circle.
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\left( {x - a} \right)}^2} + {{\left( {y - b} \right)}^2}}& = &{{r^2}}
\end{array}\]
We will get,
\[\begin{array}{*{20}{c}}
{ \Rightarrow a}& = &2
\end{array}\] and \[\begin{array}{*{20}{c}}
b& = &3
\end{array}\]
Therefore, the center of the circle will be O (2, 2).
As we know, the center of the circle is the midpoint of the Line AC.
We also know the formula to determine the midpoint of the line.
\[ \Rightarrow \begin{array}{*{20}{c}}
a& = &{\dfrac{{{x_1} + P}}{2}}
\end{array}\]And \[\begin{array}{*{20}{c}}
b& = &{\dfrac{{{y_1} + Q}}{2}}
\end{array}\]
Therefore, the line AC
\[ \Rightarrow \begin{array}{*{20}{c}}
2& = &{\dfrac{{3 + P}}{2}}
\end{array}\]and \[\begin{array}{*{20}{c}}
3& = &{\dfrac{{4 + Q}}{2}}
\end{array}\]
\[ \Rightarrow \begin{array}{*{20}{c}}
P& = &1
\end{array}\]and \[\begin{array}{*{20}{c}}
Q& = &2
\end{array}\]
Therefore, the coordinates of the other end of the circle is (1, 2).
So, Option ‘A’ is correct
Note: It is important to note that the midpoint of the diameter of the circle always lies at the center of the circle.
Complete step by step solution: First of all, we will draw a figure according to the given conditions,

Figure 1
In this problem, we have to find the coordinates of the other end of the circle. Let us assume that the coordinates of the other end of the circle are C (P, Q). As shown in the figure, the diameter of the circle is line AC. Therefore, the midpoint of line AC is Point O (Center of the circle).
Now from the given equation, we will evaluate the center of the circle. Therefore,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {x^2} + {y^2} - 4x - 6y + 11}& = &0
\end{array}\]
In the above equation, add and subtract 2. So, we will get
\[\begin{array}{*{20}{c}}
{ \Rightarrow {x^2} + {y^2} - 4x - 6y + 9 + 2 - 2}& = &0
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow {x^2} + {y^2} - 4x - 6y + 13}& = &2
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow \left( {{x^2} - 4x + 4} \right) + \left( {{y^2} - 6y + 9} \right)}& = &2
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\left( {x - 2} \right)}^2} + {{\left( {y - 3} \right)}^2}}& = &2
\end{array}\]
Now compare the above equation with the general equation of the circle.
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\left( {x - a} \right)}^2} + {{\left( {y - b} \right)}^2}}& = &{{r^2}}
\end{array}\]
We will get,
\[\begin{array}{*{20}{c}}
{ \Rightarrow a}& = &2
\end{array}\] and \[\begin{array}{*{20}{c}}
b& = &3
\end{array}\]
Therefore, the center of the circle will be O (2, 2).
As we know, the center of the circle is the midpoint of the Line AC.
We also know the formula to determine the midpoint of the line.
\[ \Rightarrow \begin{array}{*{20}{c}}
a& = &{\dfrac{{{x_1} + P}}{2}}
\end{array}\]And \[\begin{array}{*{20}{c}}
b& = &{\dfrac{{{y_1} + Q}}{2}}
\end{array}\]
Therefore, the line AC
\[ \Rightarrow \begin{array}{*{20}{c}}
2& = &{\dfrac{{3 + P}}{2}}
\end{array}\]and \[\begin{array}{*{20}{c}}
3& = &{\dfrac{{4 + Q}}{2}}
\end{array}\]
\[ \Rightarrow \begin{array}{*{20}{c}}
P& = &1
\end{array}\]and \[\begin{array}{*{20}{c}}
Q& = &2
\end{array}\]
Therefore, the coordinates of the other end of the circle is (1, 2).
So, Option ‘A’ is correct
Note: It is important to note that the midpoint of the diameter of the circle always lies at the center of the circle.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

