Answer
Verified
81.6k+ views
Hint Einstein’s mass energy relation is \[E = m{c^2}\], here, E is the binding energy, m is the mass defect and c is the speed of light. Mass defect is the mass anomaly in calculating mass in a nucleus. This mass defect times \[{c^2}\] is equivalent to Binding Energy (BE).
Complete step-by-step solution
Binding energy: The neutrons and protons in a stable nucleus are held together by nuclear forces and energy is needed to pull them infinitely apart, this energy is called binding energy.
$BE = \Delta m \times {c^2}$
Mass defect: It is found that the mass of the nucleus is always less than the sum of the masses of its constituent nucleons in free state, this difference in mass is called mass defect. It is given by,
$\Delta m = \{ Z{M_p} + (A - Z){M_n}\} - M(A,Z)$
Where,
\[M{\text{ }}\left( {A,{\text{ }}Z} \right)\], \[{M_p}\], and \[{M_n}\] are mass of nucleus, proton and neutron respectively. and Z is mass and atomic number.
Thus, by substituting the value of ∆m in BE, we get
$\begin{gathered}
BE = \{ Z{M_p} + (A - Z){M_n}\} - M(A,Z) \times {c^2} \\
\frac{{BE}}{{{c^2}}} = \{ Z{M_p} + (A - Z){M_n}\} - M(A,Z) \\
M(A,Z) = \{ Z{M_p} + (A - Z){M_n}\} - \frac{{BE}}{{{c^2}}} \\
\end{gathered} $
Hence, the correct option is C
Note The binding energy is expressed in J when mass defect is in kg. And for converting from mass to energy, one needs to multiply \[{c^2}\] to it. To convert from Energy to mass, it has to be divided by \[{c^2}\]. If mass defect is in amu then binding energy is 931 MeV times \[\Delta m\].
In subjects like general relativity and quantum mechanics, the factor \[{c^2}\] that differentiates between mass and energy is ignored; the two quantities are considered equivalent. Just like how the number 1 is ignored after being multiplied to some arbitrary quantity.
Complete step-by-step solution
Binding energy: The neutrons and protons in a stable nucleus are held together by nuclear forces and energy is needed to pull them infinitely apart, this energy is called binding energy.
$BE = \Delta m \times {c^2}$
Mass defect: It is found that the mass of the nucleus is always less than the sum of the masses of its constituent nucleons in free state, this difference in mass is called mass defect. It is given by,
$\Delta m = \{ Z{M_p} + (A - Z){M_n}\} - M(A,Z)$
Where,
\[M{\text{ }}\left( {A,{\text{ }}Z} \right)\], \[{M_p}\], and \[{M_n}\] are mass of nucleus, proton and neutron respectively. and Z is mass and atomic number.
Thus, by substituting the value of ∆m in BE, we get
$\begin{gathered}
BE = \{ Z{M_p} + (A - Z){M_n}\} - M(A,Z) \times {c^2} \\
\frac{{BE}}{{{c^2}}} = \{ Z{M_p} + (A - Z){M_n}\} - M(A,Z) \\
M(A,Z) = \{ Z{M_p} + (A - Z){M_n}\} - \frac{{BE}}{{{c^2}}} \\
\end{gathered} $
Hence, the correct option is C
Note The binding energy is expressed in J when mass defect is in kg. And for converting from mass to energy, one needs to multiply \[{c^2}\] to it. To convert from Energy to mass, it has to be divided by \[{c^2}\]. If mass defect is in amu then binding energy is 931 MeV times \[\Delta m\].
In subjects like general relativity and quantum mechanics, the factor \[{c^2}\] that differentiates between mass and energy is ignored; the two quantities are considered equivalent. Just like how the number 1 is ignored after being multiplied to some arbitrary quantity.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Differentiate between homogeneous and heterogeneous class 12 chemistry JEE_Main
A rope of 1 cm in diameter breaks if tension in it class 11 physics JEE_Main
Assertion The melting point Mn is more than that of class 11 chemistry JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main