
If $\left| z \right| = \left| \omega \right|,\omega \ne 0$and$\arg \left( z \right) + \arg \left( \omega \right) = \pi $, then $z = $
$
{\text{a}}{\text{. }} - \omega \\
{\text{b}}{\text{. }}\omega \\
{\text{c}}{\text{. }}\varpi \\
{\text{d}}{\text{. }} - \varpi \\
$
Answer
126.6k+ views
Hint: Assume $z = \left| z \right|{e^{i\alpha }}$and $\omega = \left| \omega \right|{e^{i\beta }}$
Let, $z = \left| z \right|{e^{i\alpha }}.............\left( 1 \right),{\text{ }}\omega = \left| \omega \right|{e^{i\beta }}.........\left( 2 \right)$
Where $z$and $\omega $are complex numbers.
From equation 1,$\arg \left( z \right) = \alpha $and $\arg \left( \omega \right) = \beta $
According to question it is given that
$
\arg \left( z \right) + \arg \left( \omega \right) = \pi \\
\Rightarrow \alpha + \beta = \pi \\
\Rightarrow \alpha = \pi - \beta ..........\left( 3 \right) \\
$
From equation (1) and (3)
$
z = \left| z \right|{e^{i\alpha }} \\
\Rightarrow z = \left| z \right|{e^{i\left( {\pi - \beta } \right)}} \\
\Rightarrow z = \left| z \right|{e^{i\pi }}{e^{ - i\beta }}........\left( 4 \right) \\
$
Now from equation (2)
$\omega = \left| \omega \right|{e^{i\beta }}$
Now take conjugate on both sides
$
\varpi = \overline {\left| \omega \right|{e^{i\beta }}} \\
\Rightarrow \varpi = \left| \varpi \right|{e^{ - i\beta }} \\
\Rightarrow {e^{ - i\beta }} = \frac{\varpi }{{\left| \varpi \right|}}..........\left( 5 \right) \\
$
Now, from equation (4) and (5)
$
\Rightarrow z = \left| z \right|{e^{i\pi }}{e^{ - i\beta }} \\
\Rightarrow z = \left| z \right|{e^{i\pi }}\left( {\frac{\varpi }{{\left| \varpi \right|}}} \right).......\left( 6 \right) \\
$
Now as we know modulus of any complex numbers and its conjugate both are equal so, use this property
$\left| \omega \right| = \left| \varpi \right|$
Therefore from equation (6)
$ \Rightarrow z = \left| z \right|{e^{i\pi }}\left( {\frac{\varpi }{{\left| \omega \right|}}} \right).........\left( 7 \right)$
Now it is given that
$\left| z \right| = \left| \omega \right|,\omega \ne 0$
Therefore from equation (7)
$
\Rightarrow z = \left| z \right|{e^{i\pi }}\left( {\frac{\varpi }{{\left| z \right|}}} \right) \\
\Rightarrow z = \varpi {e^{i\pi }}........\left( 8 \right) \\
$
Now according to Euler’s Theorem ${e^{ix}} = \cos x + i\sin x$
$ \Rightarrow {e^{i\pi }} = \cos \pi + i\sin \pi $
Now we know $\cos \pi = - 1,{\text{ }}\sin \pi = 0$
$ \Rightarrow {e^{i\pi }} = - 1 + 0 = - 1$
Therefore from equation (8)
$
\Rightarrow z = \varpi {e^{i\pi }} \\
\Rightarrow z = - \varpi \\
$
Hence, option (d) is correct.
Note: Whenever we face such types of problems, always assume the complex numbers in the form of $z = \left| z \right|{e^{i\alpha }}$and $\omega = \left| \omega \right|{e^{i\beta }}$, then use the given conditions to simplify it, then use the property that modulus of any complex numbers and its conjugate both are equal and finally using Euler’s Theorem we get the required result.
Let, $z = \left| z \right|{e^{i\alpha }}.............\left( 1 \right),{\text{ }}\omega = \left| \omega \right|{e^{i\beta }}.........\left( 2 \right)$
Where $z$and $\omega $are complex numbers.
From equation 1,$\arg \left( z \right) = \alpha $and $\arg \left( \omega \right) = \beta $
According to question it is given that
$
\arg \left( z \right) + \arg \left( \omega \right) = \pi \\
\Rightarrow \alpha + \beta = \pi \\
\Rightarrow \alpha = \pi - \beta ..........\left( 3 \right) \\
$
From equation (1) and (3)
$
z = \left| z \right|{e^{i\alpha }} \\
\Rightarrow z = \left| z \right|{e^{i\left( {\pi - \beta } \right)}} \\
\Rightarrow z = \left| z \right|{e^{i\pi }}{e^{ - i\beta }}........\left( 4 \right) \\
$
Now from equation (2)
$\omega = \left| \omega \right|{e^{i\beta }}$
Now take conjugate on both sides
$
\varpi = \overline {\left| \omega \right|{e^{i\beta }}} \\
\Rightarrow \varpi = \left| \varpi \right|{e^{ - i\beta }} \\
\Rightarrow {e^{ - i\beta }} = \frac{\varpi }{{\left| \varpi \right|}}..........\left( 5 \right) \\
$
Now, from equation (4) and (5)
$
\Rightarrow z = \left| z \right|{e^{i\pi }}{e^{ - i\beta }} \\
\Rightarrow z = \left| z \right|{e^{i\pi }}\left( {\frac{\varpi }{{\left| \varpi \right|}}} \right).......\left( 6 \right) \\
$
Now as we know modulus of any complex numbers and its conjugate both are equal so, use this property
$\left| \omega \right| = \left| \varpi \right|$
Therefore from equation (6)
$ \Rightarrow z = \left| z \right|{e^{i\pi }}\left( {\frac{\varpi }{{\left| \omega \right|}}} \right).........\left( 7 \right)$
Now it is given that
$\left| z \right| = \left| \omega \right|,\omega \ne 0$
Therefore from equation (7)
$
\Rightarrow z = \left| z \right|{e^{i\pi }}\left( {\frac{\varpi }{{\left| z \right|}}} \right) \\
\Rightarrow z = \varpi {e^{i\pi }}........\left( 8 \right) \\
$
Now according to Euler’s Theorem ${e^{ix}} = \cos x + i\sin x$
$ \Rightarrow {e^{i\pi }} = \cos \pi + i\sin \pi $
Now we know $\cos \pi = - 1,{\text{ }}\sin \pi = 0$
$ \Rightarrow {e^{i\pi }} = - 1 + 0 = - 1$
Therefore from equation (8)
$
\Rightarrow z = \varpi {e^{i\pi }} \\
\Rightarrow z = - \varpi \\
$
Hence, option (d) is correct.
Note: Whenever we face such types of problems, always assume the complex numbers in the form of $z = \left| z \right|{e^{i\alpha }}$and $\omega = \left| \omega \right|{e^{i\beta }}$, then use the given conditions to simplify it, then use the property that modulus of any complex numbers and its conjugate both are equal and finally using Euler’s Theorem we get the required result.
Recently Updated Pages
Difference Between Area and Volume

Difference Between Mutually Exclusive and Independent Events

The real roots of the equation x23 + x13 2 0 are A class 11 maths JEE_Main

Find the reminder when 798 is divided by 5 class 11 maths JEE_Main

If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main Login 2045: Step-by-Step Instructions and Details

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions for Class 11 Maths Chapter 12 Limits and Derivatives

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 13 Statistics
