
If \[{\left( {\dfrac{3}{2} + i\dfrac{{\sqrt 3 }}{2}} \right)^{50}} = {3^{25}}\left( {x + iy} \right)\], where \[x\] and \[y\] are real. Then find the ordered pair \[\left( {x,y} \right)\].
A. \[\left( { - 3,0} \right)\]
B. \[\left( {0,3} \right)\]
C. \[\left( {0, - 3} \right)\]
D. \[\left( {\dfrac{1}{2},\sqrt {\dfrac{3}{2}} } \right)\]
Answer
164.7k+ views
Hint We know that, the cube root of 1 are 1, \[\omega = \dfrac{{ - 1 + i\sqrt 3 }}{2}\] and \[{\omega ^2} = \dfrac{{ - 1 - i\sqrt 3 }}{2}\]. First, we will take common \[\sqrt 3 \] from the left side of the equation and put \[\omega = \dfrac{{ - 1 + i\sqrt 3 }}{2}\]. Then simplify the equation and compare the real part and imaginary part to get the value of \[x\] and \[y\].
Formula used:
The cube root of 1 are 1, \[\omega = \dfrac{{ - 1 + i\sqrt 3 }}{2}\] and \[{\omega ^2} = \dfrac{{ - 1 - i\sqrt 3 }}{2}\].
\[{\omega ^3} = 1\]
\[{i^2} = - 1\]
Complete step by step solution
Given equation is \[{\left( {\dfrac{3}{2} + i\dfrac{{\sqrt 3 }}{2}} \right)^{50}} = {3^{25}}\left( {x + iy} \right)\]
Take common \[i\sqrt 3 \]
\[{\left( {i\sqrt 3 } \right)^{50}}{\left( {\dfrac{{\sqrt 3 }}{{2i}} + \dfrac{1}{2}} \right)^{50}} = {3^{25}}\left( {x + iy} \right)\]
Multiply \[i\] with numerator and denominator of \[\dfrac{{\sqrt 3 }}{{2i}}\]
\[ \Rightarrow {\left( {i\sqrt 3 } \right)^{50}}{\left( {\dfrac{{i\sqrt 3 }}{{2{i^2}}} + \dfrac{1}{2}} \right)^{50}} = {3^{25}}\left( {x + iy} \right)\]
Putting \[{i^2} = - 1\]
\[ \Rightarrow {\left( {i\sqrt 3 } \right)^{50}}{\left( { - \dfrac{{i\sqrt 3 }}{2} + \dfrac{1}{2}} \right)^{50}} = {3^{25}}\left( {x + iy} \right)\]
\[ \Rightarrow {i^{50}}{\left( {{3^{\dfrac{1}{2}}}} \right)^{50}}{\left( {\dfrac{{1 - i\sqrt 3 }}{2}} \right)^{50}} = {3^{25}}\left( {x + iy} \right)\]
\[ \Rightarrow {i^{50}}{\left( {{3^{\dfrac{1}{2}}}} \right)^{50}}{\left( {\dfrac{{ - 1 + i\sqrt 3 }}{2}} \right)^{50}} = {3^{25}}\left( {x + iy} \right)\]
Now putting \[\omega = \dfrac{{ - 1 + i\sqrt 3 }}{2}\]
\[ \Rightarrow {i^{50}}{\left( {{3^{\dfrac{1}{2}}}} \right)^{50}}{\omega ^{50}} = {3^{25}}\left( {x + iy} \right)\]
\[ \Rightarrow {i^{48}} \cdot {i^2} \cdot {3^{25}} \cdot {\omega ^{50}} = {3^{25}}\left( {x + iy} \right)\] [Since \[{\left( {{3^{\dfrac{1}{2}}}} \right)^{50}} = {3^{\dfrac{1}{2} \cdot 50}} = {3^{25}}\]]
\[ \Rightarrow {\left( {{i^4}} \right)^{12}} \cdot {i^2} \cdot {3^{25}} \cdot {\omega ^{50}} = {3^{25}}\left( {x + iy} \right)\]
Putting \[{i^4} = 1\] and \[{i^2} = - 1\]
\[ \Rightarrow - {3^{25}} \cdot {\omega ^{50}} = {3^{25}}\left( {x + iy} \right)\]
Now divide both sides by \[{3^{25}}\]
\[ \Rightarrow - {\omega ^{50}} = \left( {x + iy} \right)\]
\[ \Rightarrow - {\omega ^{48}} \cdot {\omega ^2} = \left( {x + iy} \right)\]
\[ \Rightarrow - {\left( {{\omega ^3}} \right)^{16}} \cdot {\omega ^2} = \left( {x + iy} \right)\]
Putting \[{\omega ^3} = 1\] in the above equation
\[ \Rightarrow - {\left( 1 \right)^{16}} \cdot {\omega ^2} = \left( {x + iy} \right)\]
\[ \Rightarrow - {\omega ^2} = \left( {x + iy} \right)\]
Putting \[{\omega ^2} = \dfrac{{ - 1 - i\sqrt 3 }}{2}\] in the above equation
\[ \Rightarrow - \dfrac{{ - 1 - i\sqrt 3 }}{2} = \left( {x + iy} \right)\]
\[ \Rightarrow \dfrac{1}{2} + \dfrac{{i\sqrt 3 }}{2} = \left( {x + iy} \right)\]
Now comparing the real part and imaginary part
\[x = \dfrac{1}{2}\] and \[y = \dfrac{{\sqrt 3 }}{2}\]
So, the ordered pair is \[\left( {\dfrac{1}{2},\dfrac{{\sqrt 3 }}{2}} \right)\].
Hence option D is the correct option.
Note: Students often do a common mistake to solve the equation \[{\left( {\dfrac{3}{2} + i\dfrac{{\sqrt 3 }}{2}} \right)^{50}} = {3^{25}}\left( {x + iy} \right)\]. They used binomial expansion to solve the incorrect way. We should use cube roots of 1 to solve the equation.
Formula used:
The cube root of 1 are 1, \[\omega = \dfrac{{ - 1 + i\sqrt 3 }}{2}\] and \[{\omega ^2} = \dfrac{{ - 1 - i\sqrt 3 }}{2}\].
\[{\omega ^3} = 1\]
\[{i^2} = - 1\]
Complete step by step solution
Given equation is \[{\left( {\dfrac{3}{2} + i\dfrac{{\sqrt 3 }}{2}} \right)^{50}} = {3^{25}}\left( {x + iy} \right)\]
Take common \[i\sqrt 3 \]
\[{\left( {i\sqrt 3 } \right)^{50}}{\left( {\dfrac{{\sqrt 3 }}{{2i}} + \dfrac{1}{2}} \right)^{50}} = {3^{25}}\left( {x + iy} \right)\]
Multiply \[i\] with numerator and denominator of \[\dfrac{{\sqrt 3 }}{{2i}}\]
\[ \Rightarrow {\left( {i\sqrt 3 } \right)^{50}}{\left( {\dfrac{{i\sqrt 3 }}{{2{i^2}}} + \dfrac{1}{2}} \right)^{50}} = {3^{25}}\left( {x + iy} \right)\]
Putting \[{i^2} = - 1\]
\[ \Rightarrow {\left( {i\sqrt 3 } \right)^{50}}{\left( { - \dfrac{{i\sqrt 3 }}{2} + \dfrac{1}{2}} \right)^{50}} = {3^{25}}\left( {x + iy} \right)\]
\[ \Rightarrow {i^{50}}{\left( {{3^{\dfrac{1}{2}}}} \right)^{50}}{\left( {\dfrac{{1 - i\sqrt 3 }}{2}} \right)^{50}} = {3^{25}}\left( {x + iy} \right)\]
\[ \Rightarrow {i^{50}}{\left( {{3^{\dfrac{1}{2}}}} \right)^{50}}{\left( {\dfrac{{ - 1 + i\sqrt 3 }}{2}} \right)^{50}} = {3^{25}}\left( {x + iy} \right)\]
Now putting \[\omega = \dfrac{{ - 1 + i\sqrt 3 }}{2}\]
\[ \Rightarrow {i^{50}}{\left( {{3^{\dfrac{1}{2}}}} \right)^{50}}{\omega ^{50}} = {3^{25}}\left( {x + iy} \right)\]
\[ \Rightarrow {i^{48}} \cdot {i^2} \cdot {3^{25}} \cdot {\omega ^{50}} = {3^{25}}\left( {x + iy} \right)\] [Since \[{\left( {{3^{\dfrac{1}{2}}}} \right)^{50}} = {3^{\dfrac{1}{2} \cdot 50}} = {3^{25}}\]]
\[ \Rightarrow {\left( {{i^4}} \right)^{12}} \cdot {i^2} \cdot {3^{25}} \cdot {\omega ^{50}} = {3^{25}}\left( {x + iy} \right)\]
Putting \[{i^4} = 1\] and \[{i^2} = - 1\]
\[ \Rightarrow - {3^{25}} \cdot {\omega ^{50}} = {3^{25}}\left( {x + iy} \right)\]
Now divide both sides by \[{3^{25}}\]
\[ \Rightarrow - {\omega ^{50}} = \left( {x + iy} \right)\]
\[ \Rightarrow - {\omega ^{48}} \cdot {\omega ^2} = \left( {x + iy} \right)\]
\[ \Rightarrow - {\left( {{\omega ^3}} \right)^{16}} \cdot {\omega ^2} = \left( {x + iy} \right)\]
Putting \[{\omega ^3} = 1\] in the above equation
\[ \Rightarrow - {\left( 1 \right)^{16}} \cdot {\omega ^2} = \left( {x + iy} \right)\]
\[ \Rightarrow - {\omega ^2} = \left( {x + iy} \right)\]
Putting \[{\omega ^2} = \dfrac{{ - 1 - i\sqrt 3 }}{2}\] in the above equation
\[ \Rightarrow - \dfrac{{ - 1 - i\sqrt 3 }}{2} = \left( {x + iy} \right)\]
\[ \Rightarrow \dfrac{1}{2} + \dfrac{{i\sqrt 3 }}{2} = \left( {x + iy} \right)\]
Now comparing the real part and imaginary part
\[x = \dfrac{1}{2}\] and \[y = \dfrac{{\sqrt 3 }}{2}\]
So, the ordered pair is \[\left( {\dfrac{1}{2},\dfrac{{\sqrt 3 }}{2}} \right)\].
Hence option D is the correct option.
Note: Students often do a common mistake to solve the equation \[{\left( {\dfrac{3}{2} + i\dfrac{{\sqrt 3 }}{2}} \right)^{50}} = {3^{25}}\left( {x + iy} \right)\]. They used binomial expansion to solve the incorrect way. We should use cube roots of 1 to solve the equation.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
