
If $\left( {2,1} \right),\left( {4,5} \right),\left( { - 1, - 3} \right)$ are the midpoints of the sides of a triangle, then the coordinate of its vertices are
A. $\left( { - 3, - 7} \right),\left( {17,9} \right),\left( {1,1} \right)$
B. $\left( { - 3,7} \right),\left( {7,9} \right),\left( { - 1,1} \right)$
C. $\left( { - 3, - 7} \right),\left( {7,9} \right),\left( {1,1} \right)$
D. None
Answer
218.4k+ views
Hint: In this question, the coordinates of the midpoints of the sides of a triangle are given and the coordinates of the vertices are required. Let the vertices of the triangle be $A\left( {{x_1},{y_1}} \right),B\left( {{x_2},{y_2}} \right)$ and $C\left( {{x_3},{y_3}} \right)$. Then find the coordinates of the midpoints of the sides using the midpoint formula. Thus you’ll get six equations. Solving the equations you’ll obtain the vertices of the triangle.
Formula Used:
Coordinate of midpoint of a line segment joining two points $A\left( {{x_1},{y_1}} \right)$ and $B\left( {{x_2},{y_2}} \right)$ is $\left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right)$
Complete step by step solution:
Let the vertices of the triangle be $A\left( {{x_1},{y_1}} \right),B\left( {{x_2},{y_2}} \right)$ and $C\left( {{x_3},{y_3}} \right)$.
Also, let the midpoints of the sides $AB,BC,CA$ be $D,E,F$ respectively.
The coordinates of the points $D,E,F$ are $\left( {2,1} \right),\left( {4,5} \right),\left( { - 1, - 3} \right)$ respectively.
Using midpoint formula, we get
The coordinate of the midpoint of the side $AB$ be $\left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right)$
So, $\dfrac{{{x_1} + {x_2}}}{2} = 2$ and $\dfrac{{{y_1} + {y_2}}}{2} = 1$
$ \Rightarrow {x_1} + {x_2} = 4.....\left( i \right)$ and ${y_1} + {y_2} = 2.....\left( {ii} \right)$
The coordinate of the midpoint of the side $BC$ be $\left( {\dfrac{{{x_2} + {x_3}}}{2},\dfrac{{{y_2} + {y_3}}}{2}} \right)$
So, $\dfrac{{{x_2} + {x_3}}}{2} = 4$ and $\dfrac{{{y_2} + {y_3}}}{2} = 5$
$ \Rightarrow {x_2} + {x_3} = 8.....\left( {iii} \right)$ and ${y_2} + {y_3} = 10.....\left( {iv} \right)$
The coordinate of the midpoint of the side $CA$ be $\left( {\dfrac{{{x_3} + {x_1}}}{2},\dfrac{{{y_3} + {y_1}}}{2}} \right)$
So, $\dfrac{{{x_3} + {x_1}}}{2} = - 1$ and $\dfrac{{{y_3} + {y_1}}}{2} = - 3$
$ \Rightarrow {x_3} + {x_1} = - 2.....\left( v \right)$ and ${y_3} + {y_1} = - 6.....\left( {vi} \right)$
Solve equations $\left( i \right),\left( {iii} \right),\left( v \right)$ to get the values of ${x_1},{x_2},{x_3}$
Adding the equations $\left( i \right),\left( {iii} \right),\left( v \right)$, we get
$\begin{array}{l}2\left( {{x_1} + {x_2} + {x_3}} \right) = 10\\ \Rightarrow {x_1} + {x_2} + {x_3} = 5.....\left( {vii} \right)\end{array}$
Subtracting equation $\left( i \right)$ from equation $\left( {vii} \right)$, we get ${x_3} = 1$
Subtracting equation $\left( {iii} \right)$ from equation $\left( {vii} \right)$, we get ${x_1} = - 3$
Subtracting equation $\left( v \right)$ from equation $\left( {vii} \right)$, we get ${x_2} = 7$
Now, solve equations $\left( {ii} \right),\left( {iv} \right),\left( {vi} \right)$ to get the values of ${y_1},{y_2},{y_3}$
Adding the equations $\left( {ii} \right),\left( {iv} \right),\left( {vi} \right)$, we get
$\begin{array}{l}2\left( {{y_1} + {y_2} + {y_3}} \right) = 6\\ \Rightarrow {y_1} + {y_2} + {y_3} = 3.....\left( {viii} \right)\end{array}$
Subtracting equation $\left( {ii} \right)$ from equation $\left( {viii} \right)$, we get ${y_3} = 1$
Subtracting equation $\left( {iv} \right)$ from equation $\left( {viii} \right)$, we get ${y_1} = - 7$
Subtracting equation $\left( v \right)$ from equation $\left( {viii} \right)$, we get ${y_2} = 9$
Finally, we have
$\left( {{x_1},{y_1}} \right) = \left( { - 3, - 7} \right),\left( {{x_2},{y_2}} \right) = \left( {7,9} \right),\left( {{x_3},{y_3}} \right) = \left( {1,1} \right)$
Option ‘C’ is correct
Note: There are other methods for solving linear equations. You may use any of the methods. Here we first start by adding all of the equations, then subtracted the original equations from the resulting equation to obtain the values of the unknowns one by one.
Formula Used:
Coordinate of midpoint of a line segment joining two points $A\left( {{x_1},{y_1}} \right)$ and $B\left( {{x_2},{y_2}} \right)$ is $\left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right)$
Complete step by step solution:
Let the vertices of the triangle be $A\left( {{x_1},{y_1}} \right),B\left( {{x_2},{y_2}} \right)$ and $C\left( {{x_3},{y_3}} \right)$.
Also, let the midpoints of the sides $AB,BC,CA$ be $D,E,F$ respectively.
The coordinates of the points $D,E,F$ are $\left( {2,1} \right),\left( {4,5} \right),\left( { - 1, - 3} \right)$ respectively.
Using midpoint formula, we get
The coordinate of the midpoint of the side $AB$ be $\left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right)$
So, $\dfrac{{{x_1} + {x_2}}}{2} = 2$ and $\dfrac{{{y_1} + {y_2}}}{2} = 1$
$ \Rightarrow {x_1} + {x_2} = 4.....\left( i \right)$ and ${y_1} + {y_2} = 2.....\left( {ii} \right)$
The coordinate of the midpoint of the side $BC$ be $\left( {\dfrac{{{x_2} + {x_3}}}{2},\dfrac{{{y_2} + {y_3}}}{2}} \right)$
So, $\dfrac{{{x_2} + {x_3}}}{2} = 4$ and $\dfrac{{{y_2} + {y_3}}}{2} = 5$
$ \Rightarrow {x_2} + {x_3} = 8.....\left( {iii} \right)$ and ${y_2} + {y_3} = 10.....\left( {iv} \right)$
The coordinate of the midpoint of the side $CA$ be $\left( {\dfrac{{{x_3} + {x_1}}}{2},\dfrac{{{y_3} + {y_1}}}{2}} \right)$
So, $\dfrac{{{x_3} + {x_1}}}{2} = - 1$ and $\dfrac{{{y_3} + {y_1}}}{2} = - 3$
$ \Rightarrow {x_3} + {x_1} = - 2.....\left( v \right)$ and ${y_3} + {y_1} = - 6.....\left( {vi} \right)$
Solve equations $\left( i \right),\left( {iii} \right),\left( v \right)$ to get the values of ${x_1},{x_2},{x_3}$
Adding the equations $\left( i \right),\left( {iii} \right),\left( v \right)$, we get
$\begin{array}{l}2\left( {{x_1} + {x_2} + {x_3}} \right) = 10\\ \Rightarrow {x_1} + {x_2} + {x_3} = 5.....\left( {vii} \right)\end{array}$
Subtracting equation $\left( i \right)$ from equation $\left( {vii} \right)$, we get ${x_3} = 1$
Subtracting equation $\left( {iii} \right)$ from equation $\left( {vii} \right)$, we get ${x_1} = - 3$
Subtracting equation $\left( v \right)$ from equation $\left( {vii} \right)$, we get ${x_2} = 7$
Now, solve equations $\left( {ii} \right),\left( {iv} \right),\left( {vi} \right)$ to get the values of ${y_1},{y_2},{y_3}$
Adding the equations $\left( {ii} \right),\left( {iv} \right),\left( {vi} \right)$, we get
$\begin{array}{l}2\left( {{y_1} + {y_2} + {y_3}} \right) = 6\\ \Rightarrow {y_1} + {y_2} + {y_3} = 3.....\left( {viii} \right)\end{array}$
Subtracting equation $\left( {ii} \right)$ from equation $\left( {viii} \right)$, we get ${y_3} = 1$
Subtracting equation $\left( {iv} \right)$ from equation $\left( {viii} \right)$, we get ${y_1} = - 7$
Subtracting equation $\left( v \right)$ from equation $\left( {viii} \right)$, we get ${y_2} = 9$
Finally, we have
$\left( {{x_1},{y_1}} \right) = \left( { - 3, - 7} \right),\left( {{x_2},{y_2}} \right) = \left( {7,9} \right),\left( {{x_3},{y_3}} \right) = \left( {1,1} \right)$
Option ‘C’ is correct
Note: There are other methods for solving linear equations. You may use any of the methods. Here we first start by adding all of the equations, then subtracted the original equations from the resulting equation to obtain the values of the unknowns one by one.
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

