
If $\left( {2,1} \right),\left( {4,5} \right),\left( { - 1, - 3} \right)$ are the midpoints of the sides of a triangle, then the coordinate of its vertices are
A. $\left( { - 3, - 7} \right),\left( {17,9} \right),\left( {1,1} \right)$
B. $\left( { - 3,7} \right),\left( {7,9} \right),\left( { - 1,1} \right)$
C. $\left( { - 3, - 7} \right),\left( {7,9} \right),\left( {1,1} \right)$
D. None
Answer
219k+ views
Hint: In this question, the coordinates of the midpoints of the sides of a triangle are given and the coordinates of the vertices are required. Let the vertices of the triangle be $A\left( {{x_1},{y_1}} \right),B\left( {{x_2},{y_2}} \right)$ and $C\left( {{x_3},{y_3}} \right)$. Then find the coordinates of the midpoints of the sides using the midpoint formula. Thus you’ll get six equations. Solving the equations you’ll obtain the vertices of the triangle.
Formula Used:
Coordinate of midpoint of a line segment joining two points $A\left( {{x_1},{y_1}} \right)$ and $B\left( {{x_2},{y_2}} \right)$ is $\left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right)$
Complete step by step solution:
Let the vertices of the triangle be $A\left( {{x_1},{y_1}} \right),B\left( {{x_2},{y_2}} \right)$ and $C\left( {{x_3},{y_3}} \right)$.
Also, let the midpoints of the sides $AB,BC,CA$ be $D,E,F$ respectively.
The coordinates of the points $D,E,F$ are $\left( {2,1} \right),\left( {4,5} \right),\left( { - 1, - 3} \right)$ respectively.
Using midpoint formula, we get
The coordinate of the midpoint of the side $AB$ be $\left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right)$
So, $\dfrac{{{x_1} + {x_2}}}{2} = 2$ and $\dfrac{{{y_1} + {y_2}}}{2} = 1$
$ \Rightarrow {x_1} + {x_2} = 4.....\left( i \right)$ and ${y_1} + {y_2} = 2.....\left( {ii} \right)$
The coordinate of the midpoint of the side $BC$ be $\left( {\dfrac{{{x_2} + {x_3}}}{2},\dfrac{{{y_2} + {y_3}}}{2}} \right)$
So, $\dfrac{{{x_2} + {x_3}}}{2} = 4$ and $\dfrac{{{y_2} + {y_3}}}{2} = 5$
$ \Rightarrow {x_2} + {x_3} = 8.....\left( {iii} \right)$ and ${y_2} + {y_3} = 10.....\left( {iv} \right)$
The coordinate of the midpoint of the side $CA$ be $\left( {\dfrac{{{x_3} + {x_1}}}{2},\dfrac{{{y_3} + {y_1}}}{2}} \right)$
So, $\dfrac{{{x_3} + {x_1}}}{2} = - 1$ and $\dfrac{{{y_3} + {y_1}}}{2} = - 3$
$ \Rightarrow {x_3} + {x_1} = - 2.....\left( v \right)$ and ${y_3} + {y_1} = - 6.....\left( {vi} \right)$
Solve equations $\left( i \right),\left( {iii} \right),\left( v \right)$ to get the values of ${x_1},{x_2},{x_3}$
Adding the equations $\left( i \right),\left( {iii} \right),\left( v \right)$, we get
$\begin{array}{l}2\left( {{x_1} + {x_2} + {x_3}} \right) = 10\\ \Rightarrow {x_1} + {x_2} + {x_3} = 5.....\left( {vii} \right)\end{array}$
Subtracting equation $\left( i \right)$ from equation $\left( {vii} \right)$, we get ${x_3} = 1$
Subtracting equation $\left( {iii} \right)$ from equation $\left( {vii} \right)$, we get ${x_1} = - 3$
Subtracting equation $\left( v \right)$ from equation $\left( {vii} \right)$, we get ${x_2} = 7$
Now, solve equations $\left( {ii} \right),\left( {iv} \right),\left( {vi} \right)$ to get the values of ${y_1},{y_2},{y_3}$
Adding the equations $\left( {ii} \right),\left( {iv} \right),\left( {vi} \right)$, we get
$\begin{array}{l}2\left( {{y_1} + {y_2} + {y_3}} \right) = 6\\ \Rightarrow {y_1} + {y_2} + {y_3} = 3.....\left( {viii} \right)\end{array}$
Subtracting equation $\left( {ii} \right)$ from equation $\left( {viii} \right)$, we get ${y_3} = 1$
Subtracting equation $\left( {iv} \right)$ from equation $\left( {viii} \right)$, we get ${y_1} = - 7$
Subtracting equation $\left( v \right)$ from equation $\left( {viii} \right)$, we get ${y_2} = 9$
Finally, we have
$\left( {{x_1},{y_1}} \right) = \left( { - 3, - 7} \right),\left( {{x_2},{y_2}} \right) = \left( {7,9} \right),\left( {{x_3},{y_3}} \right) = \left( {1,1} \right)$
Option ‘C’ is correct
Note: There are other methods for solving linear equations. You may use any of the methods. Here we first start by adding all of the equations, then subtracted the original equations from the resulting equation to obtain the values of the unknowns one by one.
Formula Used:
Coordinate of midpoint of a line segment joining two points $A\left( {{x_1},{y_1}} \right)$ and $B\left( {{x_2},{y_2}} \right)$ is $\left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right)$
Complete step by step solution:
Let the vertices of the triangle be $A\left( {{x_1},{y_1}} \right),B\left( {{x_2},{y_2}} \right)$ and $C\left( {{x_3},{y_3}} \right)$.
Also, let the midpoints of the sides $AB,BC,CA$ be $D,E,F$ respectively.
The coordinates of the points $D,E,F$ are $\left( {2,1} \right),\left( {4,5} \right),\left( { - 1, - 3} \right)$ respectively.
Using midpoint formula, we get
The coordinate of the midpoint of the side $AB$ be $\left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right)$
So, $\dfrac{{{x_1} + {x_2}}}{2} = 2$ and $\dfrac{{{y_1} + {y_2}}}{2} = 1$
$ \Rightarrow {x_1} + {x_2} = 4.....\left( i \right)$ and ${y_1} + {y_2} = 2.....\left( {ii} \right)$
The coordinate of the midpoint of the side $BC$ be $\left( {\dfrac{{{x_2} + {x_3}}}{2},\dfrac{{{y_2} + {y_3}}}{2}} \right)$
So, $\dfrac{{{x_2} + {x_3}}}{2} = 4$ and $\dfrac{{{y_2} + {y_3}}}{2} = 5$
$ \Rightarrow {x_2} + {x_3} = 8.....\left( {iii} \right)$ and ${y_2} + {y_3} = 10.....\left( {iv} \right)$
The coordinate of the midpoint of the side $CA$ be $\left( {\dfrac{{{x_3} + {x_1}}}{2},\dfrac{{{y_3} + {y_1}}}{2}} \right)$
So, $\dfrac{{{x_3} + {x_1}}}{2} = - 1$ and $\dfrac{{{y_3} + {y_1}}}{2} = - 3$
$ \Rightarrow {x_3} + {x_1} = - 2.....\left( v \right)$ and ${y_3} + {y_1} = - 6.....\left( {vi} \right)$
Solve equations $\left( i \right),\left( {iii} \right),\left( v \right)$ to get the values of ${x_1},{x_2},{x_3}$
Adding the equations $\left( i \right),\left( {iii} \right),\left( v \right)$, we get
$\begin{array}{l}2\left( {{x_1} + {x_2} + {x_3}} \right) = 10\\ \Rightarrow {x_1} + {x_2} + {x_3} = 5.....\left( {vii} \right)\end{array}$
Subtracting equation $\left( i \right)$ from equation $\left( {vii} \right)$, we get ${x_3} = 1$
Subtracting equation $\left( {iii} \right)$ from equation $\left( {vii} \right)$, we get ${x_1} = - 3$
Subtracting equation $\left( v \right)$ from equation $\left( {vii} \right)$, we get ${x_2} = 7$
Now, solve equations $\left( {ii} \right),\left( {iv} \right),\left( {vi} \right)$ to get the values of ${y_1},{y_2},{y_3}$
Adding the equations $\left( {ii} \right),\left( {iv} \right),\left( {vi} \right)$, we get
$\begin{array}{l}2\left( {{y_1} + {y_2} + {y_3}} \right) = 6\\ \Rightarrow {y_1} + {y_2} + {y_3} = 3.....\left( {viii} \right)\end{array}$
Subtracting equation $\left( {ii} \right)$ from equation $\left( {viii} \right)$, we get ${y_3} = 1$
Subtracting equation $\left( {iv} \right)$ from equation $\left( {viii} \right)$, we get ${y_1} = - 7$
Subtracting equation $\left( v \right)$ from equation $\left( {viii} \right)$, we get ${y_2} = 9$
Finally, we have
$\left( {{x_1},{y_1}} \right) = \left( { - 3, - 7} \right),\left( {{x_2},{y_2}} \right) = \left( {7,9} \right),\left( {{x_3},{y_3}} \right) = \left( {1,1} \right)$
Option ‘C’ is correct
Note: There are other methods for solving linear equations. You may use any of the methods. Here we first start by adding all of the equations, then subtracted the original equations from the resulting equation to obtain the values of the unknowns one by one.
Recently Updated Pages
In a game two players A and B take turns in throwing class 12 maths JEE_Main

The number of ways in which 6 men and 5 women can dine class 12 maths JEE_Main

The area of an expanding rectangle is increasing at class 12 maths JEE_Main

If y xxx cdots infty then find dfracdydx A yxy 1 B class 12 maths JEE_Main

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

