
If $\left( {2,1} \right),\left( {4,5} \right),\left( { - 1, - 3} \right)$ are the midpoints of the sides of a triangle, then the coordinate of its vertices are
A. $\left( { - 3, - 7} \right),\left( {17,9} \right),\left( {1,1} \right)$
B. $\left( { - 3,7} \right),\left( {7,9} \right),\left( { - 1,1} \right)$
C. $\left( { - 3, - 7} \right),\left( {7,9} \right),\left( {1,1} \right)$
D. None
Answer
161.4k+ views
Hint: In this question, the coordinates of the midpoints of the sides of a triangle are given and the coordinates of the vertices are required. Let the vertices of the triangle be $A\left( {{x_1},{y_1}} \right),B\left( {{x_2},{y_2}} \right)$ and $C\left( {{x_3},{y_3}} \right)$. Then find the coordinates of the midpoints of the sides using the midpoint formula. Thus you’ll get six equations. Solving the equations you’ll obtain the vertices of the triangle.
Formula Used:
Coordinate of midpoint of a line segment joining two points $A\left( {{x_1},{y_1}} \right)$ and $B\left( {{x_2},{y_2}} \right)$ is $\left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right)$
Complete step by step solution:
Let the vertices of the triangle be $A\left( {{x_1},{y_1}} \right),B\left( {{x_2},{y_2}} \right)$ and $C\left( {{x_3},{y_3}} \right)$.
Also, let the midpoints of the sides $AB,BC,CA$ be $D,E,F$ respectively.
The coordinates of the points $D,E,F$ are $\left( {2,1} \right),\left( {4,5} \right),\left( { - 1, - 3} \right)$ respectively.
Using midpoint formula, we get
The coordinate of the midpoint of the side $AB$ be $\left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right)$
So, $\dfrac{{{x_1} + {x_2}}}{2} = 2$ and $\dfrac{{{y_1} + {y_2}}}{2} = 1$
$ \Rightarrow {x_1} + {x_2} = 4.....\left( i \right)$ and ${y_1} + {y_2} = 2.....\left( {ii} \right)$
The coordinate of the midpoint of the side $BC$ be $\left( {\dfrac{{{x_2} + {x_3}}}{2},\dfrac{{{y_2} + {y_3}}}{2}} \right)$
So, $\dfrac{{{x_2} + {x_3}}}{2} = 4$ and $\dfrac{{{y_2} + {y_3}}}{2} = 5$
$ \Rightarrow {x_2} + {x_3} = 8.....\left( {iii} \right)$ and ${y_2} + {y_3} = 10.....\left( {iv} \right)$
The coordinate of the midpoint of the side $CA$ be $\left( {\dfrac{{{x_3} + {x_1}}}{2},\dfrac{{{y_3} + {y_1}}}{2}} \right)$
So, $\dfrac{{{x_3} + {x_1}}}{2} = - 1$ and $\dfrac{{{y_3} + {y_1}}}{2} = - 3$
$ \Rightarrow {x_3} + {x_1} = - 2.....\left( v \right)$ and ${y_3} + {y_1} = - 6.....\left( {vi} \right)$
Solve equations $\left( i \right),\left( {iii} \right),\left( v \right)$ to get the values of ${x_1},{x_2},{x_3}$
Adding the equations $\left( i \right),\left( {iii} \right),\left( v \right)$, we get
$\begin{array}{l}2\left( {{x_1} + {x_2} + {x_3}} \right) = 10\\ \Rightarrow {x_1} + {x_2} + {x_3} = 5.....\left( {vii} \right)\end{array}$
Subtracting equation $\left( i \right)$ from equation $\left( {vii} \right)$, we get ${x_3} = 1$
Subtracting equation $\left( {iii} \right)$ from equation $\left( {vii} \right)$, we get ${x_1} = - 3$
Subtracting equation $\left( v \right)$ from equation $\left( {vii} \right)$, we get ${x_2} = 7$
Now, solve equations $\left( {ii} \right),\left( {iv} \right),\left( {vi} \right)$ to get the values of ${y_1},{y_2},{y_3}$
Adding the equations $\left( {ii} \right),\left( {iv} \right),\left( {vi} \right)$, we get
$\begin{array}{l}2\left( {{y_1} + {y_2} + {y_3}} \right) = 6\\ \Rightarrow {y_1} + {y_2} + {y_3} = 3.....\left( {viii} \right)\end{array}$
Subtracting equation $\left( {ii} \right)$ from equation $\left( {viii} \right)$, we get ${y_3} = 1$
Subtracting equation $\left( {iv} \right)$ from equation $\left( {viii} \right)$, we get ${y_1} = - 7$
Subtracting equation $\left( v \right)$ from equation $\left( {viii} \right)$, we get ${y_2} = 9$
Finally, we have
$\left( {{x_1},{y_1}} \right) = \left( { - 3, - 7} \right),\left( {{x_2},{y_2}} \right) = \left( {7,9} \right),\left( {{x_3},{y_3}} \right) = \left( {1,1} \right)$
Option ‘C’ is correct
Note: There are other methods for solving linear equations. You may use any of the methods. Here we first start by adding all of the equations, then subtracted the original equations from the resulting equation to obtain the values of the unknowns one by one.
Formula Used:
Coordinate of midpoint of a line segment joining two points $A\left( {{x_1},{y_1}} \right)$ and $B\left( {{x_2},{y_2}} \right)$ is $\left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right)$
Complete step by step solution:
Let the vertices of the triangle be $A\left( {{x_1},{y_1}} \right),B\left( {{x_2},{y_2}} \right)$ and $C\left( {{x_3},{y_3}} \right)$.
Also, let the midpoints of the sides $AB,BC,CA$ be $D,E,F$ respectively.
The coordinates of the points $D,E,F$ are $\left( {2,1} \right),\left( {4,5} \right),\left( { - 1, - 3} \right)$ respectively.
Using midpoint formula, we get
The coordinate of the midpoint of the side $AB$ be $\left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right)$
So, $\dfrac{{{x_1} + {x_2}}}{2} = 2$ and $\dfrac{{{y_1} + {y_2}}}{2} = 1$
$ \Rightarrow {x_1} + {x_2} = 4.....\left( i \right)$ and ${y_1} + {y_2} = 2.....\left( {ii} \right)$
The coordinate of the midpoint of the side $BC$ be $\left( {\dfrac{{{x_2} + {x_3}}}{2},\dfrac{{{y_2} + {y_3}}}{2}} \right)$
So, $\dfrac{{{x_2} + {x_3}}}{2} = 4$ and $\dfrac{{{y_2} + {y_3}}}{2} = 5$
$ \Rightarrow {x_2} + {x_3} = 8.....\left( {iii} \right)$ and ${y_2} + {y_3} = 10.....\left( {iv} \right)$
The coordinate of the midpoint of the side $CA$ be $\left( {\dfrac{{{x_3} + {x_1}}}{2},\dfrac{{{y_3} + {y_1}}}{2}} \right)$
So, $\dfrac{{{x_3} + {x_1}}}{2} = - 1$ and $\dfrac{{{y_3} + {y_1}}}{2} = - 3$
$ \Rightarrow {x_3} + {x_1} = - 2.....\left( v \right)$ and ${y_3} + {y_1} = - 6.....\left( {vi} \right)$
Solve equations $\left( i \right),\left( {iii} \right),\left( v \right)$ to get the values of ${x_1},{x_2},{x_3}$
Adding the equations $\left( i \right),\left( {iii} \right),\left( v \right)$, we get
$\begin{array}{l}2\left( {{x_1} + {x_2} + {x_3}} \right) = 10\\ \Rightarrow {x_1} + {x_2} + {x_3} = 5.....\left( {vii} \right)\end{array}$
Subtracting equation $\left( i \right)$ from equation $\left( {vii} \right)$, we get ${x_3} = 1$
Subtracting equation $\left( {iii} \right)$ from equation $\left( {vii} \right)$, we get ${x_1} = - 3$
Subtracting equation $\left( v \right)$ from equation $\left( {vii} \right)$, we get ${x_2} = 7$
Now, solve equations $\left( {ii} \right),\left( {iv} \right),\left( {vi} \right)$ to get the values of ${y_1},{y_2},{y_3}$
Adding the equations $\left( {ii} \right),\left( {iv} \right),\left( {vi} \right)$, we get
$\begin{array}{l}2\left( {{y_1} + {y_2} + {y_3}} \right) = 6\\ \Rightarrow {y_1} + {y_2} + {y_3} = 3.....\left( {viii} \right)\end{array}$
Subtracting equation $\left( {ii} \right)$ from equation $\left( {viii} \right)$, we get ${y_3} = 1$
Subtracting equation $\left( {iv} \right)$ from equation $\left( {viii} \right)$, we get ${y_1} = - 7$
Subtracting equation $\left( v \right)$ from equation $\left( {viii} \right)$, we get ${y_2} = 9$
Finally, we have
$\left( {{x_1},{y_1}} \right) = \left( { - 3, - 7} \right),\left( {{x_2},{y_2}} \right) = \left( {7,9} \right),\left( {{x_3},{y_3}} \right) = \left( {1,1} \right)$
Option ‘C’ is correct
Note: There are other methods for solving linear equations. You may use any of the methods. Here we first start by adding all of the equations, then subtracted the original equations from the resulting equation to obtain the values of the unknowns one by one.
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Cutoff Percentile for 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Notes
