
If \[\int_a^b {{x^3}} dx = 0\] and \[\int_a^b {{x^2}} dx = \dfrac{2}{3}\]. What are the value of \[a\] and \[b\] ?
A.1,1
B.-1,-1
C.1,-1
D.-1,1
Answer
232.8k+ views
Hint: We will solve the first integration \[\int_a^b {{x^3}} dx = 0\] and derive a condition. Then we will solve the second integration\[\int_a^b {{x^2}} dx = \dfrac{2}{3}\]. In the solution of the second integration, we will put the value of \[b\] which we get from the solution of the first integration.
Formula Used: \[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} + c\]
\[\int\limits_a^b {{x^n}dx} = \dfrac{b^{n + 1}}{n + 1} - \dfrac{a^{n + 1}}{n + 1}\]
Complete answer: We know the formula of power rule in the integration
We know the formula of power rule in the integration
\[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} + c\]
The formula of the definite integral is \[\int\limits_a^b {{x^n}dx} = \dfrac{{{b^{n + 1}}}}{{n + 1}} - \dfrac{{{a^{n + 1}}}}{{n + 1}}\]
The first integration is
\[\int_a^b {{x^3}} dx = 0\]
Now we will apply the formula\[\int\limits_a^b {{x^n}dx} = \dfrac{{{b^{n + 1}}}}{{n + 1}} - \dfrac{{{a^{n + 1}}}}{{n + 1}}\], here \[n = 3\].
\[\dfrac{{{b^{3 + 1}}}}{{3 + 1}} - \dfrac{{{a^{3 + 1}}}}{{3 + 1}} = 0\]
\[ \Rightarrow \dfrac{{{b^4}}}{4} - \dfrac{{{a^4}}}{4} = 0\]
\[ \Rightarrow {b^4} - {a^4} = 0\]
\[ \Rightarrow \left( {{b^2} - {a^2}} \right)\left( {{b^2} + {a^2}} \right) = 0\]
Either or,
\[\left( {{b^2} - {a^2}} \right) = 0\] or \[\left( {{b^2} + {a^2}} \right) = 0\]
\[\left( {b - a} \right)\left( {b + a} \right) = 0\]
Either or
\[\begin{array}{l}b - a = 0\\ \Rightarrow b = a\end{array}\] \[\begin{array}{l}b + a = 0\\ \Rightarrow b = - a\end{array}\]
If \[b = a\], then the value of \[\int_a^b {{x^2}} dx\] is also zero. But \[\int_a^b {{x^2}} dx \ne 0\]. Thus \[b = - a\].
Now we will solve the second integration
\[\int_a^b {{x^2}} dx = \dfrac{2}{3}\]
Apply the formula \[\int\limits_a^b {{x^n}dx} = \dfrac{{{b^{n + 1}}}}{{n + 1}} - \dfrac{{{a^{n + 1}}}}{{n + 1}}\], here \[n = 2\].
\[ \Rightarrow \dfrac{{{b^{2 + 1}}}}{{2 + 1}} - \dfrac{{{a^{2 + 1}}}}{{2 + 1}} = \dfrac{2}{3}\]
\[ \Rightarrow \dfrac{{{b^3}}}{3} - \dfrac{{{a^3}}}{3} = \dfrac{2}{3}\]
\[ \Rightarrow {b^3} - {a^3} = \dfrac{2}{3} \cdot 3\]
\[ \Rightarrow {b^3} - {a^3} = 2\]
\[ \Rightarrow {\left( { - a} \right)^3} - {a^3} = 2\]
\[ \Rightarrow - {a^3} - {a^3} = 2\]
\[ \Rightarrow - 2{a^3} = 2\]
\[ \Rightarrow {a^3} = - 1\]
\[ \Rightarrow a = - 1\]
Now we will put \[a = - 1\] in \[b = - a\].
\[\begin{array}{c}b = - \left( { - 1} \right)\\ = 1\end{array}\]
The value of \[a\] and \[b\] are -1 and 1 respectively.
Option ‘D’ is correct
Note: The cube root of a negative number is always a negative number and the cube root of a positive number is a positive number.
Formula Used: \[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} + c\]
\[\int\limits_a^b {{x^n}dx} = \dfrac{b^{n + 1}}{n + 1} - \dfrac{a^{n + 1}}{n + 1}\]
Complete answer: We know the formula of power rule in the integration
We know the formula of power rule in the integration
\[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} + c\]
The formula of the definite integral is \[\int\limits_a^b {{x^n}dx} = \dfrac{{{b^{n + 1}}}}{{n + 1}} - \dfrac{{{a^{n + 1}}}}{{n + 1}}\]
The first integration is
\[\int_a^b {{x^3}} dx = 0\]
Now we will apply the formula\[\int\limits_a^b {{x^n}dx} = \dfrac{{{b^{n + 1}}}}{{n + 1}} - \dfrac{{{a^{n + 1}}}}{{n + 1}}\], here \[n = 3\].
\[\dfrac{{{b^{3 + 1}}}}{{3 + 1}} - \dfrac{{{a^{3 + 1}}}}{{3 + 1}} = 0\]
\[ \Rightarrow \dfrac{{{b^4}}}{4} - \dfrac{{{a^4}}}{4} = 0\]
\[ \Rightarrow {b^4} - {a^4} = 0\]
\[ \Rightarrow \left( {{b^2} - {a^2}} \right)\left( {{b^2} + {a^2}} \right) = 0\]
Either or,
\[\left( {{b^2} - {a^2}} \right) = 0\] or \[\left( {{b^2} + {a^2}} \right) = 0\]
\[\left( {b - a} \right)\left( {b + a} \right) = 0\]
Either or
\[\begin{array}{l}b - a = 0\\ \Rightarrow b = a\end{array}\] \[\begin{array}{l}b + a = 0\\ \Rightarrow b = - a\end{array}\]
If \[b = a\], then the value of \[\int_a^b {{x^2}} dx\] is also zero. But \[\int_a^b {{x^2}} dx \ne 0\]. Thus \[b = - a\].
Now we will solve the second integration
\[\int_a^b {{x^2}} dx = \dfrac{2}{3}\]
Apply the formula \[\int\limits_a^b {{x^n}dx} = \dfrac{{{b^{n + 1}}}}{{n + 1}} - \dfrac{{{a^{n + 1}}}}{{n + 1}}\], here \[n = 2\].
\[ \Rightarrow \dfrac{{{b^{2 + 1}}}}{{2 + 1}} - \dfrac{{{a^{2 + 1}}}}{{2 + 1}} = \dfrac{2}{3}\]
\[ \Rightarrow \dfrac{{{b^3}}}{3} - \dfrac{{{a^3}}}{3} = \dfrac{2}{3}\]
\[ \Rightarrow {b^3} - {a^3} = \dfrac{2}{3} \cdot 3\]
\[ \Rightarrow {b^3} - {a^3} = 2\]
\[ \Rightarrow {\left( { - a} \right)^3} - {a^3} = 2\]
\[ \Rightarrow - {a^3} - {a^3} = 2\]
\[ \Rightarrow - 2{a^3} = 2\]
\[ \Rightarrow {a^3} = - 1\]
\[ \Rightarrow a = - 1\]
Now we will put \[a = - 1\] in \[b = - a\].
\[\begin{array}{c}b = - \left( { - 1} \right)\\ = 1\end{array}\]
The value of \[a\] and \[b\] are -1 and 1 respectively.
Option ‘D’ is correct
Note: The cube root of a negative number is always a negative number and the cube root of a positive number is a positive number.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

