
If \[\int_0^a {{e^{x - \left[ x \right]}}} dx = 10e - 9\],then what is the value of a? (Where \[\left[ . \right]\]is the greatest integer function)
A.\[9 + \ln 2\]
B. \[10 + \ln 2\]
C. \[10\]
D. \[9\]
Answer
218.7k+ views
Hint: We will try to remove the greatest integer function by breaking x in appropriate intervals and then applying the integration for \[{e^{x - \alpha }}\] (where α is real no.) to integrate them individually, after solving the integrals individually we will sum up all of them and comparing the calculated value of integral with the given value of integral.
Formula used:
1. \[\left[ x \right] = n,\,\,\,n\, \le x < n + 1\] (Here n is a natural no.)
2. \[\int {{e^{x - \alpha }}} dx = {e^{x - \alpha }} + c\] (Here α is any real no.)
3. \[\int\limits_a^{b + c} {f\left( x \right)} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_b^c {f\left( x \right)} dx\] (Here a,b and c are real numbers.)
Complete step by step solution:
Let \[a = I + f\]where \[I\]be the integer and \[f\]be a fraction.
Then
\[\int_0^a {{e^{x - \left[ x \right]}}} dx = \]\[\int_0^{I + f} {{e^{x - \left[ x \right]}}} dx\] --- (1.1)
By the property of integral –
\[\int\limits_0^{b + c} {f\left( x \right)} dx = \int\limits_0^b {f\left( x \right)} dx + \int\limits_b^c {f\left( x \right)} dx\]
Using the above integral formula in equation (1.1)
\[\begin{array}{l}\int_0^{I + f} {{e^{x - \left[ x \right]}}} dx = \int\limits_0^I {{e^{x - \left[ x \right]}}} dx + \int\limits_I^{I + f} {{e^{x - \left[ x \right]}}} dx\\\end{array}\]
Let \[{I_1} = \int\limits_0^I {{e^{x - \left[ x \right]}}} dx\] and \[{I_2} = \int\limits_I^{I + f} {{e^{x - \left[ x \right]}}} dx\]
Then
\[I = {I_1} + {I_2}\]
Solving for \[{I_1}\]
\[{I_1} = \int\limits_0^I {{e^{x - \left[ x \right]}}} dx\]
Again, using the above integral formula in \[{I_1}\] to break the integral into intervals
\[{I_1} = \int\limits_0^1 {{e^{x - \left[ x \right]}}dx} + \int\limits_1^2 {{e^{x - \left[ x \right]}}dx} + \int\limits_2^3 {{e^{x - \left[ x \right]}}dx} + \int\limits_3^4 {{e^{x - \left[ x \right]}}dx} + ..... + \int\limits_{I - 1}^I {{e^{x - \left[ x \right]}}} dx\]
We know the property of the greatest integer function
\[\left[ x \right] = n,\,\,\,n\, \le x < n + 1\]
\[{I_1} = \int\limits_0^1 {{e^{x - \left[ x \right]}}dx} + \int\limits_1^2 {{e^{x - \left[ x \right]}}dx} + \int\limits_2^3 {{e^{x - \left[ x \right]}}dx} + \int\limits_3^4 {{e^{x - \left[ x \right]}}dx} + ..... + \int\limits_{I - 1}^I {{e^{x - \left[ x \right]}}} dx\]
Applying the above formula for the greatest integer function in \[{I_1}\]
\[{I_1} = \int\limits_0^1 {{e^x}dx} + \int\limits_1^2 {{e^{x - 1}}dx} + \int\limits_2^3 {{e^{x - 2}}dx} + \int\limits_3^4 {{e^{x - 3}}dx} + ..... + \int\limits_{I - 1}^I {{e^{x - (I - 1)}}} dx\]
\[ \Rightarrow {I_1} = (e - 1) + (e - 1) + (e - 1) + ............... + (e - 1)\]
\[ \Rightarrow {I_1} = Ie - I\]
Again, solving for \[{I_2}\]
\[{I_2} = \int\limits_I^{I + f} {{e^{x - \left[ x \right]}}} dx\]
Using the formula
\[\left[ x \right] = n,\,\,\,n\, \le x < n + 1\]
Since \[I < x < I + f\] here so \[\left[ x \right] = I\] .
\[{I_2} = \int\limits_I^{I + f} {{e^{x - I}}} dx\]
\[ \Rightarrow {I_2} = {e^f} - 1\]
\[I = {I_1} + {I_2}\]
\[ \Rightarrow I = Ie - I + {e^f} - 1\]
\[ \Rightarrow I = Ie - (I + 1) + {e^f}\]
Comparing the evaluated value of integral from the given value
\[Ie - (1 + I) + {e^f}\]=\[10e - 9\]
By observation \[I = 10\]
\[{e^f} - (1 + I) = - 9\]
Putting I=10
\[ \Rightarrow {e^f} - 11 = - 9\]
Rearranging the terms
\[ \Rightarrow {e^f} = 2\]
Taking in both sides of the equations
\[\ln {e^f} = \ln 2\]
\[ \Rightarrow f\ln e = \ln 2\]
(Using \[\ln {a^b} = b\ln a\])
\[ \Rightarrow f = \ln 2\]
(Since \[\ln e = 1\])
∴ \[a = 10 + \ln 2\]
Hence option B is correct.
Note:
1. It is advised to tackle such type of question always try to start the question while removing an integral part by breaking the values of x in consecutive integrals.
2. The above integral\[{I_1}\] can be solved also if we know the concept of periodicity of the greatest integer function. If \[f(x)\] is a periodic function and \[T\] be the period of function then –
\[\int\limits_0^{nT} {f(x)dx = n\int\limits_0^T {f(x)dx} } \]
Where \[n\] is an integer.
The greatest integer function is periodic with the period 1 so
\[{I_1} = \int\limits_0^I {{e^{x - \left[ x \right]}}} dx\]
\[ \Rightarrow {I_1} = I\int\limits_0^1 {{e^{x - \left[ x \right]}}} dx\]
\[ \Rightarrow {I_1} = I(e - 1)\]
Formula used:
1. \[\left[ x \right] = n,\,\,\,n\, \le x < n + 1\] (Here n is a natural no.)
2. \[\int {{e^{x - \alpha }}} dx = {e^{x - \alpha }} + c\] (Here α is any real no.)
3. \[\int\limits_a^{b + c} {f\left( x \right)} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_b^c {f\left( x \right)} dx\] (Here a,b and c are real numbers.)
Complete step by step solution:
Let \[a = I + f\]where \[I\]be the integer and \[f\]be a fraction.
Then
\[\int_0^a {{e^{x - \left[ x \right]}}} dx = \]\[\int_0^{I + f} {{e^{x - \left[ x \right]}}} dx\] --- (1.1)
By the property of integral –
\[\int\limits_0^{b + c} {f\left( x \right)} dx = \int\limits_0^b {f\left( x \right)} dx + \int\limits_b^c {f\left( x \right)} dx\]
Using the above integral formula in equation (1.1)
\[\begin{array}{l}\int_0^{I + f} {{e^{x - \left[ x \right]}}} dx = \int\limits_0^I {{e^{x - \left[ x \right]}}} dx + \int\limits_I^{I + f} {{e^{x - \left[ x \right]}}} dx\\\end{array}\]
Let \[{I_1} = \int\limits_0^I {{e^{x - \left[ x \right]}}} dx\] and \[{I_2} = \int\limits_I^{I + f} {{e^{x - \left[ x \right]}}} dx\]
Then
\[I = {I_1} + {I_2}\]
Solving for \[{I_1}\]
\[{I_1} = \int\limits_0^I {{e^{x - \left[ x \right]}}} dx\]
Again, using the above integral formula in \[{I_1}\] to break the integral into intervals
\[{I_1} = \int\limits_0^1 {{e^{x - \left[ x \right]}}dx} + \int\limits_1^2 {{e^{x - \left[ x \right]}}dx} + \int\limits_2^3 {{e^{x - \left[ x \right]}}dx} + \int\limits_3^4 {{e^{x - \left[ x \right]}}dx} + ..... + \int\limits_{I - 1}^I {{e^{x - \left[ x \right]}}} dx\]
We know the property of the greatest integer function
\[\left[ x \right] = n,\,\,\,n\, \le x < n + 1\]
\[{I_1} = \int\limits_0^1 {{e^{x - \left[ x \right]}}dx} + \int\limits_1^2 {{e^{x - \left[ x \right]}}dx} + \int\limits_2^3 {{e^{x - \left[ x \right]}}dx} + \int\limits_3^4 {{e^{x - \left[ x \right]}}dx} + ..... + \int\limits_{I - 1}^I {{e^{x - \left[ x \right]}}} dx\]
Applying the above formula for the greatest integer function in \[{I_1}\]
\[{I_1} = \int\limits_0^1 {{e^x}dx} + \int\limits_1^2 {{e^{x - 1}}dx} + \int\limits_2^3 {{e^{x - 2}}dx} + \int\limits_3^4 {{e^{x - 3}}dx} + ..... + \int\limits_{I - 1}^I {{e^{x - (I - 1)}}} dx\]
\[ \Rightarrow {I_1} = (e - 1) + (e - 1) + (e - 1) + ............... + (e - 1)\]
\[ \Rightarrow {I_1} = Ie - I\]
Again, solving for \[{I_2}\]
\[{I_2} = \int\limits_I^{I + f} {{e^{x - \left[ x \right]}}} dx\]
Using the formula
\[\left[ x \right] = n,\,\,\,n\, \le x < n + 1\]
Since \[I < x < I + f\] here so \[\left[ x \right] = I\] .
\[{I_2} = \int\limits_I^{I + f} {{e^{x - I}}} dx\]
\[ \Rightarrow {I_2} = {e^f} - 1\]
\[I = {I_1} + {I_2}\]
\[ \Rightarrow I = Ie - I + {e^f} - 1\]
\[ \Rightarrow I = Ie - (I + 1) + {e^f}\]
Comparing the evaluated value of integral from the given value
\[Ie - (1 + I) + {e^f}\]=\[10e - 9\]
By observation \[I = 10\]
\[{e^f} - (1 + I) = - 9\]
Putting I=10
\[ \Rightarrow {e^f} - 11 = - 9\]
Rearranging the terms
\[ \Rightarrow {e^f} = 2\]
Taking in both sides of the equations
\[\ln {e^f} = \ln 2\]
\[ \Rightarrow f\ln e = \ln 2\]
(Using \[\ln {a^b} = b\ln a\])
\[ \Rightarrow f = \ln 2\]
(Since \[\ln e = 1\])
∴ \[a = 10 + \ln 2\]
Hence option B is correct.
Note:
1. It is advised to tackle such type of question always try to start the question while removing an integral part by breaking the values of x in consecutive integrals.
2. The above integral\[{I_1}\] can be solved also if we know the concept of periodicity of the greatest integer function. If \[f(x)\] is a periodic function and \[T\] be the period of function then –
\[\int\limits_0^{nT} {f(x)dx = n\int\limits_0^T {f(x)dx} } \]
Where \[n\] is an integer.
The greatest integer function is periodic with the period 1 so
\[{I_1} = \int\limits_0^I {{e^{x - \left[ x \right]}}} dx\]
\[ \Rightarrow {I_1} = I\int\limits_0^1 {{e^{x - \left[ x \right]}}} dx\]
\[ \Rightarrow {I_1} = I(e - 1)\]
Recently Updated Pages
In a game two players A and B take turns in throwing class 12 maths JEE_Main

The number of ways in which 6 men and 5 women can dine class 12 maths JEE_Main

The area of an expanding rectangle is increasing at class 12 maths JEE_Main

If y xxx cdots infty then find dfracdydx A yxy 1 B class 12 maths JEE_Main

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

