
If \[\int_0^a {{e^{x - \left[ x \right]}}} dx = 10e - 9\],then what is the value of a? (Where \[\left[ . \right]\]is the greatest integer function)
A.\[9 + \ln 2\]
B. \[10 + \ln 2\]
C. \[10\]
D. \[9\]
Answer
163.8k+ views
Hint: We will try to remove the greatest integer function by breaking x in appropriate intervals and then applying the integration for \[{e^{x - \alpha }}\] (where α is real no.) to integrate them individually, after solving the integrals individually we will sum up all of them and comparing the calculated value of integral with the given value of integral.
Formula used:
1. \[\left[ x \right] = n,\,\,\,n\, \le x < n + 1\] (Here n is a natural no.)
2. \[\int {{e^{x - \alpha }}} dx = {e^{x - \alpha }} + c\] (Here α is any real no.)
3. \[\int\limits_a^{b + c} {f\left( x \right)} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_b^c {f\left( x \right)} dx\] (Here a,b and c are real numbers.)
Complete step by step solution:
Let \[a = I + f\]where \[I\]be the integer and \[f\]be a fraction.
Then
\[\int_0^a {{e^{x - \left[ x \right]}}} dx = \]\[\int_0^{I + f} {{e^{x - \left[ x \right]}}} dx\] --- (1.1)
By the property of integral –
\[\int\limits_0^{b + c} {f\left( x \right)} dx = \int\limits_0^b {f\left( x \right)} dx + \int\limits_b^c {f\left( x \right)} dx\]
Using the above integral formula in equation (1.1)
\[\begin{array}{l}\int_0^{I + f} {{e^{x - \left[ x \right]}}} dx = \int\limits_0^I {{e^{x - \left[ x \right]}}} dx + \int\limits_I^{I + f} {{e^{x - \left[ x \right]}}} dx\\\end{array}\]
Let \[{I_1} = \int\limits_0^I {{e^{x - \left[ x \right]}}} dx\] and \[{I_2} = \int\limits_I^{I + f} {{e^{x - \left[ x \right]}}} dx\]
Then
\[I = {I_1} + {I_2}\]
Solving for \[{I_1}\]
\[{I_1} = \int\limits_0^I {{e^{x - \left[ x \right]}}} dx\]
Again, using the above integral formula in \[{I_1}\] to break the integral into intervals
\[{I_1} = \int\limits_0^1 {{e^{x - \left[ x \right]}}dx} + \int\limits_1^2 {{e^{x - \left[ x \right]}}dx} + \int\limits_2^3 {{e^{x - \left[ x \right]}}dx} + \int\limits_3^4 {{e^{x - \left[ x \right]}}dx} + ..... + \int\limits_{I - 1}^I {{e^{x - \left[ x \right]}}} dx\]
We know the property of the greatest integer function
\[\left[ x \right] = n,\,\,\,n\, \le x < n + 1\]
\[{I_1} = \int\limits_0^1 {{e^{x - \left[ x \right]}}dx} + \int\limits_1^2 {{e^{x - \left[ x \right]}}dx} + \int\limits_2^3 {{e^{x - \left[ x \right]}}dx} + \int\limits_3^4 {{e^{x - \left[ x \right]}}dx} + ..... + \int\limits_{I - 1}^I {{e^{x - \left[ x \right]}}} dx\]
Applying the above formula for the greatest integer function in \[{I_1}\]
\[{I_1} = \int\limits_0^1 {{e^x}dx} + \int\limits_1^2 {{e^{x - 1}}dx} + \int\limits_2^3 {{e^{x - 2}}dx} + \int\limits_3^4 {{e^{x - 3}}dx} + ..... + \int\limits_{I - 1}^I {{e^{x - (I - 1)}}} dx\]
\[ \Rightarrow {I_1} = (e - 1) + (e - 1) + (e - 1) + ............... + (e - 1)\]
\[ \Rightarrow {I_1} = Ie - I\]
Again, solving for \[{I_2}\]
\[{I_2} = \int\limits_I^{I + f} {{e^{x - \left[ x \right]}}} dx\]
Using the formula
\[\left[ x \right] = n,\,\,\,n\, \le x < n + 1\]
Since \[I < x < I + f\] here so \[\left[ x \right] = I\] .
\[{I_2} = \int\limits_I^{I + f} {{e^{x - I}}} dx\]
\[ \Rightarrow {I_2} = {e^f} - 1\]
\[I = {I_1} + {I_2}\]
\[ \Rightarrow I = Ie - I + {e^f} - 1\]
\[ \Rightarrow I = Ie - (I + 1) + {e^f}\]
Comparing the evaluated value of integral from the given value
\[Ie - (1 + I) + {e^f}\]=\[10e - 9\]
By observation \[I = 10\]
\[{e^f} - (1 + I) = - 9\]
Putting I=10
\[ \Rightarrow {e^f} - 11 = - 9\]
Rearranging the terms
\[ \Rightarrow {e^f} = 2\]
Taking in both sides of the equations
\[\ln {e^f} = \ln 2\]
\[ \Rightarrow f\ln e = \ln 2\]
(Using \[\ln {a^b} = b\ln a\])
\[ \Rightarrow f = \ln 2\]
(Since \[\ln e = 1\])
∴ \[a = 10 + \ln 2\]
Hence option B is correct.
Note:
1. It is advised to tackle such type of question always try to start the question while removing an integral part by breaking the values of x in consecutive integrals.
2. The above integral\[{I_1}\] can be solved also if we know the concept of periodicity of the greatest integer function. If \[f(x)\] is a periodic function and \[T\] be the period of function then –
\[\int\limits_0^{nT} {f(x)dx = n\int\limits_0^T {f(x)dx} } \]
Where \[n\] is an integer.
The greatest integer function is periodic with the period 1 so
\[{I_1} = \int\limits_0^I {{e^{x - \left[ x \right]}}} dx\]
\[ \Rightarrow {I_1} = I\int\limits_0^1 {{e^{x - \left[ x \right]}}} dx\]
\[ \Rightarrow {I_1} = I(e - 1)\]
Formula used:
1. \[\left[ x \right] = n,\,\,\,n\, \le x < n + 1\] (Here n is a natural no.)
2. \[\int {{e^{x - \alpha }}} dx = {e^{x - \alpha }} + c\] (Here α is any real no.)
3. \[\int\limits_a^{b + c} {f\left( x \right)} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_b^c {f\left( x \right)} dx\] (Here a,b and c are real numbers.)
Complete step by step solution:
Let \[a = I + f\]where \[I\]be the integer and \[f\]be a fraction.
Then
\[\int_0^a {{e^{x - \left[ x \right]}}} dx = \]\[\int_0^{I + f} {{e^{x - \left[ x \right]}}} dx\] --- (1.1)
By the property of integral –
\[\int\limits_0^{b + c} {f\left( x \right)} dx = \int\limits_0^b {f\left( x \right)} dx + \int\limits_b^c {f\left( x \right)} dx\]
Using the above integral formula in equation (1.1)
\[\begin{array}{l}\int_0^{I + f} {{e^{x - \left[ x \right]}}} dx = \int\limits_0^I {{e^{x - \left[ x \right]}}} dx + \int\limits_I^{I + f} {{e^{x - \left[ x \right]}}} dx\\\end{array}\]
Let \[{I_1} = \int\limits_0^I {{e^{x - \left[ x \right]}}} dx\] and \[{I_2} = \int\limits_I^{I + f} {{e^{x - \left[ x \right]}}} dx\]
Then
\[I = {I_1} + {I_2}\]
Solving for \[{I_1}\]
\[{I_1} = \int\limits_0^I {{e^{x - \left[ x \right]}}} dx\]
Again, using the above integral formula in \[{I_1}\] to break the integral into intervals
\[{I_1} = \int\limits_0^1 {{e^{x - \left[ x \right]}}dx} + \int\limits_1^2 {{e^{x - \left[ x \right]}}dx} + \int\limits_2^3 {{e^{x - \left[ x \right]}}dx} + \int\limits_3^4 {{e^{x - \left[ x \right]}}dx} + ..... + \int\limits_{I - 1}^I {{e^{x - \left[ x \right]}}} dx\]
We know the property of the greatest integer function
\[\left[ x \right] = n,\,\,\,n\, \le x < n + 1\]
\[{I_1} = \int\limits_0^1 {{e^{x - \left[ x \right]}}dx} + \int\limits_1^2 {{e^{x - \left[ x \right]}}dx} + \int\limits_2^3 {{e^{x - \left[ x \right]}}dx} + \int\limits_3^4 {{e^{x - \left[ x \right]}}dx} + ..... + \int\limits_{I - 1}^I {{e^{x - \left[ x \right]}}} dx\]
Applying the above formula for the greatest integer function in \[{I_1}\]
\[{I_1} = \int\limits_0^1 {{e^x}dx} + \int\limits_1^2 {{e^{x - 1}}dx} + \int\limits_2^3 {{e^{x - 2}}dx} + \int\limits_3^4 {{e^{x - 3}}dx} + ..... + \int\limits_{I - 1}^I {{e^{x - (I - 1)}}} dx\]
\[ \Rightarrow {I_1} = (e - 1) + (e - 1) + (e - 1) + ............... + (e - 1)\]
\[ \Rightarrow {I_1} = Ie - I\]
Again, solving for \[{I_2}\]
\[{I_2} = \int\limits_I^{I + f} {{e^{x - \left[ x \right]}}} dx\]
Using the formula
\[\left[ x \right] = n,\,\,\,n\, \le x < n + 1\]
Since \[I < x < I + f\] here so \[\left[ x \right] = I\] .
\[{I_2} = \int\limits_I^{I + f} {{e^{x - I}}} dx\]
\[ \Rightarrow {I_2} = {e^f} - 1\]
\[I = {I_1} + {I_2}\]
\[ \Rightarrow I = Ie - I + {e^f} - 1\]
\[ \Rightarrow I = Ie - (I + 1) + {e^f}\]
Comparing the evaluated value of integral from the given value
\[Ie - (1 + I) + {e^f}\]=\[10e - 9\]
By observation \[I = 10\]
\[{e^f} - (1 + I) = - 9\]
Putting I=10
\[ \Rightarrow {e^f} - 11 = - 9\]
Rearranging the terms
\[ \Rightarrow {e^f} = 2\]
Taking in both sides of the equations
\[\ln {e^f} = \ln 2\]
\[ \Rightarrow f\ln e = \ln 2\]
(Using \[\ln {a^b} = b\ln a\])
\[ \Rightarrow f = \ln 2\]
(Since \[\ln e = 1\])
∴ \[a = 10 + \ln 2\]
Hence option B is correct.
Note:
1. It is advised to tackle such type of question always try to start the question while removing an integral part by breaking the values of x in consecutive integrals.
2. The above integral\[{I_1}\] can be solved also if we know the concept of periodicity of the greatest integer function. If \[f(x)\] is a periodic function and \[T\] be the period of function then –
\[\int\limits_0^{nT} {f(x)dx = n\int\limits_0^T {f(x)dx} } \]
Where \[n\] is an integer.
The greatest integer function is periodic with the period 1 so
\[{I_1} = \int\limits_0^I {{e^{x - \left[ x \right]}}} dx\]
\[ \Rightarrow {I_1} = I\int\limits_0^1 {{e^{x - \left[ x \right]}}} dx\]
\[ \Rightarrow {I_1} = I(e - 1)\]
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced 2025 Notes

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Degree of Dissociation and Its Formula With Solved Example for JEE
