
If \[\int_0^a {{e^{x - \left[ x \right]}}} dx = 10e - 9\],then what is the value of a? (Where \[\left[ . \right]\]is the greatest integer function)
A.\[9 + \ln 2\]
B. \[10 + \ln 2\]
C. \[10\]
D. \[9\]
Answer
233.1k+ views
Hint: We will try to remove the greatest integer function by breaking x in appropriate intervals and then applying the integration for \[{e^{x - \alpha }}\] (where α is real no.) to integrate them individually, after solving the integrals individually we will sum up all of them and comparing the calculated value of integral with the given value of integral.
Formula used:
1. \[\left[ x \right] = n,\,\,\,n\, \le x < n + 1\] (Here n is a natural no.)
2. \[\int {{e^{x - \alpha }}} dx = {e^{x - \alpha }} + c\] (Here α is any real no.)
3. \[\int\limits_a^{b + c} {f\left( x \right)} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_b^c {f\left( x \right)} dx\] (Here a,b and c are real numbers.)
Complete step by step solution:
Let \[a = I + f\]where \[I\]be the integer and \[f\]be a fraction.
Then
\[\int_0^a {{e^{x - \left[ x \right]}}} dx = \]\[\int_0^{I + f} {{e^{x - \left[ x \right]}}} dx\] --- (1.1)
By the property of integral –
\[\int\limits_0^{b + c} {f\left( x \right)} dx = \int\limits_0^b {f\left( x \right)} dx + \int\limits_b^c {f\left( x \right)} dx\]
Using the above integral formula in equation (1.1)
\[\begin{array}{l}\int_0^{I + f} {{e^{x - \left[ x \right]}}} dx = \int\limits_0^I {{e^{x - \left[ x \right]}}} dx + \int\limits_I^{I + f} {{e^{x - \left[ x \right]}}} dx\\\end{array}\]
Let \[{I_1} = \int\limits_0^I {{e^{x - \left[ x \right]}}} dx\] and \[{I_2} = \int\limits_I^{I + f} {{e^{x - \left[ x \right]}}} dx\]
Then
\[I = {I_1} + {I_2}\]
Solving for \[{I_1}\]
\[{I_1} = \int\limits_0^I {{e^{x - \left[ x \right]}}} dx\]
Again, using the above integral formula in \[{I_1}\] to break the integral into intervals
\[{I_1} = \int\limits_0^1 {{e^{x - \left[ x \right]}}dx} + \int\limits_1^2 {{e^{x - \left[ x \right]}}dx} + \int\limits_2^3 {{e^{x - \left[ x \right]}}dx} + \int\limits_3^4 {{e^{x - \left[ x \right]}}dx} + ..... + \int\limits_{I - 1}^I {{e^{x - \left[ x \right]}}} dx\]
We know the property of the greatest integer function
\[\left[ x \right] = n,\,\,\,n\, \le x < n + 1\]
\[{I_1} = \int\limits_0^1 {{e^{x - \left[ x \right]}}dx} + \int\limits_1^2 {{e^{x - \left[ x \right]}}dx} + \int\limits_2^3 {{e^{x - \left[ x \right]}}dx} + \int\limits_3^4 {{e^{x - \left[ x \right]}}dx} + ..... + \int\limits_{I - 1}^I {{e^{x - \left[ x \right]}}} dx\]
Applying the above formula for the greatest integer function in \[{I_1}\]
\[{I_1} = \int\limits_0^1 {{e^x}dx} + \int\limits_1^2 {{e^{x - 1}}dx} + \int\limits_2^3 {{e^{x - 2}}dx} + \int\limits_3^4 {{e^{x - 3}}dx} + ..... + \int\limits_{I - 1}^I {{e^{x - (I - 1)}}} dx\]
\[ \Rightarrow {I_1} = (e - 1) + (e - 1) + (e - 1) + ............... + (e - 1)\]
\[ \Rightarrow {I_1} = Ie - I\]
Again, solving for \[{I_2}\]
\[{I_2} = \int\limits_I^{I + f} {{e^{x - \left[ x \right]}}} dx\]
Using the formula
\[\left[ x \right] = n,\,\,\,n\, \le x < n + 1\]
Since \[I < x < I + f\] here so \[\left[ x \right] = I\] .
\[{I_2} = \int\limits_I^{I + f} {{e^{x - I}}} dx\]
\[ \Rightarrow {I_2} = {e^f} - 1\]
\[I = {I_1} + {I_2}\]
\[ \Rightarrow I = Ie - I + {e^f} - 1\]
\[ \Rightarrow I = Ie - (I + 1) + {e^f}\]
Comparing the evaluated value of integral from the given value
\[Ie - (1 + I) + {e^f}\]=\[10e - 9\]
By observation \[I = 10\]
\[{e^f} - (1 + I) = - 9\]
Putting I=10
\[ \Rightarrow {e^f} - 11 = - 9\]
Rearranging the terms
\[ \Rightarrow {e^f} = 2\]
Taking in both sides of the equations
\[\ln {e^f} = \ln 2\]
\[ \Rightarrow f\ln e = \ln 2\]
(Using \[\ln {a^b} = b\ln a\])
\[ \Rightarrow f = \ln 2\]
(Since \[\ln e = 1\])
∴ \[a = 10 + \ln 2\]
Hence option B is correct.
Note:
1. It is advised to tackle such type of question always try to start the question while removing an integral part by breaking the values of x in consecutive integrals.
2. The above integral\[{I_1}\] can be solved also if we know the concept of periodicity of the greatest integer function. If \[f(x)\] is a periodic function and \[T\] be the period of function then –
\[\int\limits_0^{nT} {f(x)dx = n\int\limits_0^T {f(x)dx} } \]
Where \[n\] is an integer.
The greatest integer function is periodic with the period 1 so
\[{I_1} = \int\limits_0^I {{e^{x - \left[ x \right]}}} dx\]
\[ \Rightarrow {I_1} = I\int\limits_0^1 {{e^{x - \left[ x \right]}}} dx\]
\[ \Rightarrow {I_1} = I(e - 1)\]
Formula used:
1. \[\left[ x \right] = n,\,\,\,n\, \le x < n + 1\] (Here n is a natural no.)
2. \[\int {{e^{x - \alpha }}} dx = {e^{x - \alpha }} + c\] (Here α is any real no.)
3. \[\int\limits_a^{b + c} {f\left( x \right)} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_b^c {f\left( x \right)} dx\] (Here a,b and c are real numbers.)
Complete step by step solution:
Let \[a = I + f\]where \[I\]be the integer and \[f\]be a fraction.
Then
\[\int_0^a {{e^{x - \left[ x \right]}}} dx = \]\[\int_0^{I + f} {{e^{x - \left[ x \right]}}} dx\] --- (1.1)
By the property of integral –
\[\int\limits_0^{b + c} {f\left( x \right)} dx = \int\limits_0^b {f\left( x \right)} dx + \int\limits_b^c {f\left( x \right)} dx\]
Using the above integral formula in equation (1.1)
\[\begin{array}{l}\int_0^{I + f} {{e^{x - \left[ x \right]}}} dx = \int\limits_0^I {{e^{x - \left[ x \right]}}} dx + \int\limits_I^{I + f} {{e^{x - \left[ x \right]}}} dx\\\end{array}\]
Let \[{I_1} = \int\limits_0^I {{e^{x - \left[ x \right]}}} dx\] and \[{I_2} = \int\limits_I^{I + f} {{e^{x - \left[ x \right]}}} dx\]
Then
\[I = {I_1} + {I_2}\]
Solving for \[{I_1}\]
\[{I_1} = \int\limits_0^I {{e^{x - \left[ x \right]}}} dx\]
Again, using the above integral formula in \[{I_1}\] to break the integral into intervals
\[{I_1} = \int\limits_0^1 {{e^{x - \left[ x \right]}}dx} + \int\limits_1^2 {{e^{x - \left[ x \right]}}dx} + \int\limits_2^3 {{e^{x - \left[ x \right]}}dx} + \int\limits_3^4 {{e^{x - \left[ x \right]}}dx} + ..... + \int\limits_{I - 1}^I {{e^{x - \left[ x \right]}}} dx\]
We know the property of the greatest integer function
\[\left[ x \right] = n,\,\,\,n\, \le x < n + 1\]
\[{I_1} = \int\limits_0^1 {{e^{x - \left[ x \right]}}dx} + \int\limits_1^2 {{e^{x - \left[ x \right]}}dx} + \int\limits_2^3 {{e^{x - \left[ x \right]}}dx} + \int\limits_3^4 {{e^{x - \left[ x \right]}}dx} + ..... + \int\limits_{I - 1}^I {{e^{x - \left[ x \right]}}} dx\]
Applying the above formula for the greatest integer function in \[{I_1}\]
\[{I_1} = \int\limits_0^1 {{e^x}dx} + \int\limits_1^2 {{e^{x - 1}}dx} + \int\limits_2^3 {{e^{x - 2}}dx} + \int\limits_3^4 {{e^{x - 3}}dx} + ..... + \int\limits_{I - 1}^I {{e^{x - (I - 1)}}} dx\]
\[ \Rightarrow {I_1} = (e - 1) + (e - 1) + (e - 1) + ............... + (e - 1)\]
\[ \Rightarrow {I_1} = Ie - I\]
Again, solving for \[{I_2}\]
\[{I_2} = \int\limits_I^{I + f} {{e^{x - \left[ x \right]}}} dx\]
Using the formula
\[\left[ x \right] = n,\,\,\,n\, \le x < n + 1\]
Since \[I < x < I + f\] here so \[\left[ x \right] = I\] .
\[{I_2} = \int\limits_I^{I + f} {{e^{x - I}}} dx\]
\[ \Rightarrow {I_2} = {e^f} - 1\]
\[I = {I_1} + {I_2}\]
\[ \Rightarrow I = Ie - I + {e^f} - 1\]
\[ \Rightarrow I = Ie - (I + 1) + {e^f}\]
Comparing the evaluated value of integral from the given value
\[Ie - (1 + I) + {e^f}\]=\[10e - 9\]
By observation \[I = 10\]
\[{e^f} - (1 + I) = - 9\]
Putting I=10
\[ \Rightarrow {e^f} - 11 = - 9\]
Rearranging the terms
\[ \Rightarrow {e^f} = 2\]
Taking in both sides of the equations
\[\ln {e^f} = \ln 2\]
\[ \Rightarrow f\ln e = \ln 2\]
(Using \[\ln {a^b} = b\ln a\])
\[ \Rightarrow f = \ln 2\]
(Since \[\ln e = 1\])
∴ \[a = 10 + \ln 2\]
Hence option B is correct.
Note:
1. It is advised to tackle such type of question always try to start the question while removing an integral part by breaking the values of x in consecutive integrals.
2. The above integral\[{I_1}\] can be solved also if we know the concept of periodicity of the greatest integer function. If \[f(x)\] is a periodic function and \[T\] be the period of function then –
\[\int\limits_0^{nT} {f(x)dx = n\int\limits_0^T {f(x)dx} } \]
Where \[n\] is an integer.
The greatest integer function is periodic with the period 1 so
\[{I_1} = \int\limits_0^I {{e^{x - \left[ x \right]}}} dx\]
\[ \Rightarrow {I_1} = I\int\limits_0^1 {{e^{x - \left[ x \right]}}} dx\]
\[ \Rightarrow {I_1} = I(e - 1)\]
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

