
If \[I=50kg.{{m}^{2}}\] , then how much torque will be applied to stop it in \[10\sec \] . Its initial angular speed is \[20rad/\sec \]
(A) \[100N.m\]
(B) \[150N.m\]
(C) \[200N.m\]
(D) \[250N.m\]
Answer
126.6k+ views
Hint: In the given question, we have been given the moment of inertia of a body and we have to find the torque needed to stop the angular rotation of the body; the angular velocity also has been provided to us. We can calculate the angular acceleration with the given angular velocity and the time and then we can use the obtained angular acceleration and the moment of inertia to find the torque. Let’s see the detailed solution.
Formula Used: \[\alpha =\underset{\Delta \to 0}{\mathop{\lim }}\,\dfrac{\Delta \omega }{\Delta t}\] , \[\tau =I.\alpha \]
Complete step by step solution:
We have been provided with the following values
The angular velocity of the body \[(\omega )=20rad/\sec \]
The time for which the body rotates, or the time after which the body is supposed to stop \[(t)=10\sec \]
The moment of inertia of the body \[(I)=50kg.{{m}^{2}}\]
As discussed in the hint section, our first move would be to find the angular acceleration or retardation of the body.
The angular acceleration of a body is given as \[\alpha =\underset{\Delta \to 0}{\mathop{\lim }}\,\dfrac{\Delta \omega }{\Delta t}\] where \[\Delta \omega \] is the change in the angular velocity and \[\Delta t\] is the change in the time
Since we are given only one value of angular velocity and time, we can resolve the limit in the above equation and say that \[\alpha =\dfrac{\omega }{t}\]
Substituting the values in the above equation, we get
\[\alpha =\dfrac{20rad/\sec }{10\sec }=2rad/{{\sec }^{2}}\]
As discussed above, the torque applied on a body is the product of its moment of inertia and the angular acceleration, that is \[\tau =I.\alpha \]
Substituting the values in the above equation, we can say
\[\tau =\left( 50kg.{{m}^{2}} \right)\left( 2rad/{{\sec }^{2}} \right)=100N.m\]
Hence we can say that option (A) is the correct answer to the given question.
Note:
In the above question, the units of the moment of inertia and the angular acceleration, upon multiplying will furnish the unit \[kg.{m^2}.rad/{\sec ^2}\] but we have written the unit of torque as $N.m$. This is correct because all the values that we substituted in the equation to find the value of torque were in SI units, and we know that the SI unit of torque is newton metres. Thus, if we always use standard units for our calculations, we won’t have to worry about unit conversion and the units of individual quantities.
Formula Used: \[\alpha =\underset{\Delta \to 0}{\mathop{\lim }}\,\dfrac{\Delta \omega }{\Delta t}\] , \[\tau =I.\alpha \]
Complete step by step solution:
We have been provided with the following values
The angular velocity of the body \[(\omega )=20rad/\sec \]
The time for which the body rotates, or the time after which the body is supposed to stop \[(t)=10\sec \]
The moment of inertia of the body \[(I)=50kg.{{m}^{2}}\]
As discussed in the hint section, our first move would be to find the angular acceleration or retardation of the body.
The angular acceleration of a body is given as \[\alpha =\underset{\Delta \to 0}{\mathop{\lim }}\,\dfrac{\Delta \omega }{\Delta t}\] where \[\Delta \omega \] is the change in the angular velocity and \[\Delta t\] is the change in the time
Since we are given only one value of angular velocity and time, we can resolve the limit in the above equation and say that \[\alpha =\dfrac{\omega }{t}\]
Substituting the values in the above equation, we get
\[\alpha =\dfrac{20rad/\sec }{10\sec }=2rad/{{\sec }^{2}}\]
As discussed above, the torque applied on a body is the product of its moment of inertia and the angular acceleration, that is \[\tau =I.\alpha \]
Substituting the values in the above equation, we can say
\[\tau =\left( 50kg.{{m}^{2}} \right)\left( 2rad/{{\sec }^{2}} \right)=100N.m\]
Hence we can say that option (A) is the correct answer to the given question.
Note:
In the above question, the units of the moment of inertia and the angular acceleration, upon multiplying will furnish the unit \[kg.{m^2}.rad/{\sec ^2}\] but we have written the unit of torque as $N.m$. This is correct because all the values that we substituted in the equation to find the value of torque were in SI units, and we know that the SI unit of torque is newton metres. Thus, if we always use standard units for our calculations, we won’t have to worry about unit conversion and the units of individual quantities.
Recently Updated Pages
JEE Main 2023 (April 8th Shift 2) Physics Question Paper with Answer Key

JEE Main 2023 (January 30th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key

Classification of Elements and Periodicity in Properties Chapter For JEE Main Chemistry

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

JEE Main 2023 (January 24th Shift 2) Chemistry Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Login 2045: Step-by-Step Instructions and Details

Class 11 JEE Main Physics Mock Test 2025

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
