
If \[I = \int\limits_0^{100\pi } {\sqrt {\left( {1 - \cos 2x} \right)} } dx\] , then what is the value of \[I\]?
A. \[100\sqrt 2 \]
B. \[200\sqrt 2 \]
C. \[50\sqrt 2 \]
D. None of these
Answer
163.5k+ views
Hint: Here, a definite integral is given. First, simplify the trigonometric term by using the identity \[\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta \]. Further simplify it by applying the trigonometric formula \[{\cos ^2}\theta + {\sin ^2}\theta = 1\]. Then, simplify the integral by applying the integration formula \[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\]. After that, solve the integral and apply the limits to get the required answer.
Formula Used:\[\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta \]
\[{\cos ^2}\theta + {\sin ^2}\theta = 1\]
\[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\]
\[\int\limits_a^b {\sin xdx = \left[ { - \cos x} \right]} _a^b\]
Complete step by step solution:The given definite integral is \[I = \int\limits_0^{100\pi } {\sqrt {\left( {1 - \cos 2x} \right)} } dx\].
Let’s simplify the integral.
Apply the formula \[\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta \]
\[I = \int\limits_0^{100\pi } {\sqrt {\left( {1 - \left( {{{\cos }^2}x - {{\sin }^2}x} \right)} \right)} } dx\]
\[ \Rightarrow I = \int\limits_0^{100\pi } {\sqrt {\left( {1 - {{\cos }^2}x + {{\sin }^2}x} \right)} } dx\]
Apply the trigonometric identity \[{\cos ^2}\theta + {\sin ^2}\theta = 1\].
\[ \Rightarrow I = \int\limits_0^{100\pi } {\sqrt {\left( {{{\sin }^2}x + {{\sin }^2}x} \right)} } dx\]
\[ \Rightarrow I = \int\limits_0^{100\pi } {\sqrt {2{{\sin }^2}x} } dx\]
\[ \Rightarrow I = \int\limits_0^{100\pi } {\sqrt 2 \sin x} dx\]
\[ \Rightarrow I = \sqrt 2 \int\limits_0^{100\pi } {\sin x} dx\]
Now apply the integration rule \[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\].
\[ \Rightarrow I = \sqrt 2 \times 100\int\limits_0^\pi {\sin x} dx\]
Apply the integration formula \[\int\limits_a^b {\sin xdx = \left[ { - \cos x} \right]} _a^b\].
\[ \Rightarrow I = 100\sqrt 2 \left[ { - \cos x} \right]_0^\pi \]
Apply the upper and lower limits.
\[ \Rightarrow I = 100\sqrt 2 \left[ { - \cos \pi - \left( { - \cos 0} \right)} \right]\]
\[ \Rightarrow I = 100\sqrt 2 \left[ { - \left( { - 1} \right) - \left( { - 1} \right)} \right]\]
\[ \Rightarrow I = 100\sqrt 2 \left[ {1 + 1} \right]\]
\[ \Rightarrow I = 100\sqrt 2 \left[ 2 \right]\]
\[ \Rightarrow I = 200\sqrt 2 \]
Option ‘B’ is correct
Note: Students often do mistake to integrating \[\int\limits_a^b {\sin x} dx\] . They apply the formula \[\int\limits_a^b {\sin x} dx = \left[ {\cos x} \right]_a^b\] which is an incorrect formula. They get confused because \[\dfrac{d}{{dx}}\sin x = \cos x\] . The correct formula is \[\int\limits_a^b {\sin x} dx = \left[ { - \cos x} \right]_a^b\].
Formula Used:\[\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta \]
\[{\cos ^2}\theta + {\sin ^2}\theta = 1\]
\[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\]
\[\int\limits_a^b {\sin xdx = \left[ { - \cos x} \right]} _a^b\]
Complete step by step solution:The given definite integral is \[I = \int\limits_0^{100\pi } {\sqrt {\left( {1 - \cos 2x} \right)} } dx\].
Let’s simplify the integral.
Apply the formula \[\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta \]
\[I = \int\limits_0^{100\pi } {\sqrt {\left( {1 - \left( {{{\cos }^2}x - {{\sin }^2}x} \right)} \right)} } dx\]
\[ \Rightarrow I = \int\limits_0^{100\pi } {\sqrt {\left( {1 - {{\cos }^2}x + {{\sin }^2}x} \right)} } dx\]
Apply the trigonometric identity \[{\cos ^2}\theta + {\sin ^2}\theta = 1\].
\[ \Rightarrow I = \int\limits_0^{100\pi } {\sqrt {\left( {{{\sin }^2}x + {{\sin }^2}x} \right)} } dx\]
\[ \Rightarrow I = \int\limits_0^{100\pi } {\sqrt {2{{\sin }^2}x} } dx\]
\[ \Rightarrow I = \int\limits_0^{100\pi } {\sqrt 2 \sin x} dx\]
\[ \Rightarrow I = \sqrt 2 \int\limits_0^{100\pi } {\sin x} dx\]
Now apply the integration rule \[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\].
\[ \Rightarrow I = \sqrt 2 \times 100\int\limits_0^\pi {\sin x} dx\]
Apply the integration formula \[\int\limits_a^b {\sin xdx = \left[ { - \cos x} \right]} _a^b\].
\[ \Rightarrow I = 100\sqrt 2 \left[ { - \cos x} \right]_0^\pi \]
Apply the upper and lower limits.
\[ \Rightarrow I = 100\sqrt 2 \left[ { - \cos \pi - \left( { - \cos 0} \right)} \right]\]
\[ \Rightarrow I = 100\sqrt 2 \left[ { - \left( { - 1} \right) - \left( { - 1} \right)} \right]\]
\[ \Rightarrow I = 100\sqrt 2 \left[ {1 + 1} \right]\]
\[ \Rightarrow I = 100\sqrt 2 \left[ 2 \right]\]
\[ \Rightarrow I = 200\sqrt 2 \]
Option ‘B’ is correct
Note: Students often do mistake to integrating \[\int\limits_a^b {\sin x} dx\] . They apply the formula \[\int\limits_a^b {\sin x} dx = \left[ {\cos x} \right]_a^b\] which is an incorrect formula. They get confused because \[\dfrac{d}{{dx}}\sin x = \cos x\] . The correct formula is \[\int\limits_a^b {\sin x} dx = \left[ { - \cos x} \right]_a^b\].
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
