
If H.M. between two numbers is $\dfrac{{16}}{5}$. Their A.M. is A, G.M. is G and \[2A + {\text{ }}{G^2} = 26\]. Then find the two numbers.
Answer
217.5k+ views
Hint: In this question, use the formula of relation between the geometric mean, harmonic mean and arithmetic mean. Then, you will get the two equations, solve it and you will get the answer.
Complete step by step answer:
In the question, it is given that,
Harmonic mean of two numbers is $\dfrac{{16}}{5}$.
The relation between arithmetic mean and geometric mean is \[2A + {\text{ }}{G^2} = 26\] .
We have to find the two numbers using the given conditions.
We know that, $\dfrac{{G{M^2}}}{{AM}} = HM$
Now it is given that, \[2A + {\text{ }}{G^2} = 26\]
\[{G^2} = {\text{ }}26 - {\text{ }}2A\]
By putting in the formula,
$\dfrac{{{{(26 - 2A)}^{}}}}{A} = \dfrac{{16}}{5}$
By cross multiplication,
\[5{\left( {26 - 2A} \right)^{}} = {\text{ }}16A\]
\[130{\text{ }}-{\text{ }}10A{\text{ }} = {\text{ }}16A\]
We are solving this equation
\[130{\text{ }} = {\text{ }}16A{\text{ }} + 10A\]
\[130{\text{ }} = {\text{ }}26A\]
$A = \dfrac{{130}}{{26}}$
$A = 5$
Therefore, arithmetic mean $ = 5$
Geometric mean = \[{G^2} = {\text{ }}26{\text{ }}-{\text{ }}2A\]
$G = \sqrt {26 - 2A} $
Substituting the value of A in the equation, we will get
$ = \sqrt {26 - 2 \times 5} $
$ = \sqrt {26 - 10} $
$ = \sqrt {16} $
By taking the square root we will get the value of G
\[G{\text{ }} = 4\]
Geometric mean = $4$
Now, let say the two required numbers be a and b
If arithmetic mean = 5
This implies that, $\dfrac{{a + b}}{2} = 5$
\[a{\text{ }} + {\text{ }}b = 10\;\]
If Geometric mean = 4
This implies that $\sqrt {ab} = 4$
Therefore, \[ab{\text{ }} = {\text{ }}{4^2}\]
\[ab{\text{ }} = {\text{ }}16\]
Now, we have two equations,
\[a{\text{ }} + {\text{ }}b{\text{ }} = {\text{ }}10\]
\[ab{\text{ }} = {\text{ }}16\]
solving the two equations,
\[a = 10-b\]
substituting this value in equation 2
\[\left( {10{\text{ }}-{\text{ }}b} \right){\text{ }}b = 16\]
\[10b-{b^2} = 16\]
\[{b^2}-10b + 16 = 0\]
Solving the question by middle term splitting
\[{b^2}-{\text{ }}8b{\text{ }}-{\text{ }}2b{\text{ }} + {\text{ }}16{\text{ }} = {\text{ }}0\]
\[b{\text{ }}\left( {b{\text{ }}-{\text{ }}8} \right){\text{ }}-{\text{ }}2{\text{ }}\left( {b{\text{ }} - {\text{ }}8} \right){\text{ }} = {\text{ }}0\]
\[\left( {b{\text{ }}-{\text{ }}8} \right){\text{ }}\left( {b{\text{ }}-{\text{ }}2} \right){\text{ }} = {\text{ }}0\]
Therefore, \[b{\text{ }} = {\text{ }}8{\text{ }}and{\text{ }}b = {\text{ }}2\]
Therefore \[a{\text{ }} = {\text{ }}2{\text{ }}or{\text{ }}a{\text{ }} = {\text{ }}8\]
Therefore, the required two numbers are \[2{\text{ }}and{\text{ }}8\].
Note: The two numbers are found using the middle term splitting. Both a and b got the same values, So, if we take a = 8, then b = 2 and if we take a = 2, then b = 8.
Complete step by step answer:
In the question, it is given that,
Harmonic mean of two numbers is $\dfrac{{16}}{5}$.
The relation between arithmetic mean and geometric mean is \[2A + {\text{ }}{G^2} = 26\] .
We have to find the two numbers using the given conditions.
We know that, $\dfrac{{G{M^2}}}{{AM}} = HM$
Now it is given that, \[2A + {\text{ }}{G^2} = 26\]
\[{G^2} = {\text{ }}26 - {\text{ }}2A\]
By putting in the formula,
$\dfrac{{{{(26 - 2A)}^{}}}}{A} = \dfrac{{16}}{5}$
By cross multiplication,
\[5{\left( {26 - 2A} \right)^{}} = {\text{ }}16A\]
\[130{\text{ }}-{\text{ }}10A{\text{ }} = {\text{ }}16A\]
We are solving this equation
\[130{\text{ }} = {\text{ }}16A{\text{ }} + 10A\]
\[130{\text{ }} = {\text{ }}26A\]
$A = \dfrac{{130}}{{26}}$
$A = 5$
Therefore, arithmetic mean $ = 5$
Geometric mean = \[{G^2} = {\text{ }}26{\text{ }}-{\text{ }}2A\]
$G = \sqrt {26 - 2A} $
Substituting the value of A in the equation, we will get
$ = \sqrt {26 - 2 \times 5} $
$ = \sqrt {26 - 10} $
$ = \sqrt {16} $
By taking the square root we will get the value of G
\[G{\text{ }} = 4\]
Geometric mean = $4$
Now, let say the two required numbers be a and b
If arithmetic mean = 5
This implies that, $\dfrac{{a + b}}{2} = 5$
\[a{\text{ }} + {\text{ }}b = 10\;\]
If Geometric mean = 4
This implies that $\sqrt {ab} = 4$
Therefore, \[ab{\text{ }} = {\text{ }}{4^2}\]
\[ab{\text{ }} = {\text{ }}16\]
Now, we have two equations,
\[a{\text{ }} + {\text{ }}b{\text{ }} = {\text{ }}10\]
\[ab{\text{ }} = {\text{ }}16\]
solving the two equations,
\[a = 10-b\]
substituting this value in equation 2
\[\left( {10{\text{ }}-{\text{ }}b} \right){\text{ }}b = 16\]
\[10b-{b^2} = 16\]
\[{b^2}-10b + 16 = 0\]
Solving the question by middle term splitting
\[{b^2}-{\text{ }}8b{\text{ }}-{\text{ }}2b{\text{ }} + {\text{ }}16{\text{ }} = {\text{ }}0\]
\[b{\text{ }}\left( {b{\text{ }}-{\text{ }}8} \right){\text{ }}-{\text{ }}2{\text{ }}\left( {b{\text{ }} - {\text{ }}8} \right){\text{ }} = {\text{ }}0\]
\[\left( {b{\text{ }}-{\text{ }}8} \right){\text{ }}\left( {b{\text{ }}-{\text{ }}2} \right){\text{ }} = {\text{ }}0\]
Therefore, \[b{\text{ }} = {\text{ }}8{\text{ }}and{\text{ }}b = {\text{ }}2\]
Therefore \[a{\text{ }} = {\text{ }}2{\text{ }}or{\text{ }}a{\text{ }} = {\text{ }}8\]
Therefore, the required two numbers are \[2{\text{ }}and{\text{ }}8\].
Note: The two numbers are found using the middle term splitting. Both a and b got the same values, So, if we take a = 8, then b = 2 and if we take a = 2, then b = 8.
Recently Updated Pages
Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Combination of Capacitors: Series and Parallel Explained

Compressibility Factor Explained: Definition, Formula & Uses

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

Understanding Atomic Structure for Beginners

