
If \[\gamma \] be the ratio of specific heat of a perfect gas, the number of degrees of freedom of a molecule is
(A) \[\dfrac{{25}}{2}(\gamma - 1)\]
(B) \[\dfrac{{3\gamma - 1}}{{2\gamma - 1}}\]
(C) \[\dfrac{2}{{\gamma - 1}}\]
(D) \[\dfrac{9}{2}(\gamma - 1)\]
Answer
232.8k+ views
Hint In this question we need to find the specific heat of a gas at constant volume and pressure in terms of degrees of freedom. Dividing those 2 quantities we will get \[\gamma \] which can be manipulated to find degrees of freedom.
Complete step by step solution
As we know that the vibrational degree of freedom of a diatomic gas molecule is 3 and the rotational degree of freedom is 2. This makes the total degree of freedom as 5. Let's consider this in a more general sense, let the total degree of freedom of a body be n, then its internal energy will be
\[U\, = \,\dfrac{n}{2}RT\]
This internal energy when taken at constant pressure will become the molar heat capacity at a constant volume which is :
\[{C_v}\, = \,\dfrac{n}{2}RT\]
We already know the relation:
\[{C_p} - {C_v}\, = \,RT\]
Substituting \[{C_v}\] in this relation we get,
\[
{C_p}\, = \,R + {C_v} \\
{C_p}\, = \,RT(1 + \dfrac{n}{2}) \\
\]
Where n is the number of degrees of freedom. Dividing \[{C_p}\] by \[{C_v}\] we get:
\[
\dfrac{{{C_p}}}{{{C_v}}}{\text{ }} = {\text{ }}\dfrac{{RT(1 + \dfrac{n}{2})}}{{\dfrac{n}{2}RT}} \\
\gamma \, = \,\dfrac{{2 + n}}{n} \\
n\gamma {\text{ }} = {\text{ }}2 + n \\
n = \dfrac{2}{{(\gamma - 1)}} \\
\]
Therefore the option with the correct answer is option C.
Note For a single molecule, the energy of the system is expressed as \[\dfrac{n}{2}{k_B}T\] where n the degree of freedom of the molecule. When this number is multiplied by Avogadro's number we get the energy as \[\dfrac{n}{2}RT\]
Complete step by step solution
As we know that the vibrational degree of freedom of a diatomic gas molecule is 3 and the rotational degree of freedom is 2. This makes the total degree of freedom as 5. Let's consider this in a more general sense, let the total degree of freedom of a body be n, then its internal energy will be
\[U\, = \,\dfrac{n}{2}RT\]
This internal energy when taken at constant pressure will become the molar heat capacity at a constant volume which is :
\[{C_v}\, = \,\dfrac{n}{2}RT\]
We already know the relation:
\[{C_p} - {C_v}\, = \,RT\]
Substituting \[{C_v}\] in this relation we get,
\[
{C_p}\, = \,R + {C_v} \\
{C_p}\, = \,RT(1 + \dfrac{n}{2}) \\
\]
Where n is the number of degrees of freedom. Dividing \[{C_p}\] by \[{C_v}\] we get:
\[
\dfrac{{{C_p}}}{{{C_v}}}{\text{ }} = {\text{ }}\dfrac{{RT(1 + \dfrac{n}{2})}}{{\dfrac{n}{2}RT}} \\
\gamma \, = \,\dfrac{{2 + n}}{n} \\
n\gamma {\text{ }} = {\text{ }}2 + n \\
n = \dfrac{2}{{(\gamma - 1)}} \\
\]
Therefore the option with the correct answer is option C.
Note For a single molecule, the energy of the system is expressed as \[\dfrac{n}{2}{k_B}T\] where n the degree of freedom of the molecule. When this number is multiplied by Avogadro's number we get the energy as \[\dfrac{n}{2}RT\]
Recently Updated Pages
Circuit Switching vs Packet Switching: Key Differences Explained

Dimensions of Pressure in Physics: Formula, Derivation & SI Unit

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

