Answer
Verified
85.5k+ views
Hint: The potential energy of a body is the energy possessed by the virtue of its position in the gravitational field. The gravitational potential energy of an object is given by the following equation:
$U = - \dfrac{{GMm}}{r}$
Where G=gravitational constant, M=mass of the earth, m=mass of the body, and r=distance of body from the centre of the earth. Calculate the two potential energies one at surface of earth and other at height equal to R, then gain in potential energy is given by difference in two potential energies.
Complete step by step solution:
Step1: Calculate the gravitational potential energy at the surface of the earth.
The gravitational potential energy of an object is given by the following equation-
$U = - \dfrac{{GMm}}{r}$
Where G=gravitational constant, M=mass of the earth, m=mass of the body, and r=distance of body from the centre of the earth.
At earth’s surface r=R
Therefore,
${U_1} = - \dfrac{{GMm}}{R}$
Step2: calculate the gravitational potential energy at a height of R.
Therefore, total distance from centre of earth (r)= R+R=2R
Gravitational potential energy at this height is given by-
${U_2} = - \dfrac{{GMm}}{{2R}}$
Step3: Calculate the gain in potential energy.
Therefore,
$\Delta U = {U_2} - {U_1}$
$\Delta U = - \dfrac{{GMm}}{{2R}} + \dfrac{{GMm}}{R}$
$ \Rightarrow \Delta U = \dfrac{{GMm}}{{2R}}$
Also, acceleration due to gravity is given by-
$g = \dfrac{{GM}}{{{R^2}}}$
$ \Rightarrow GM = g{R^2}$
Substituting above, we get –
$\Delta U = \dfrac{{(g{R^2})m}}{{2R}}$
$\Delta U = \dfrac{{mgR}}{2}$
Which is gain in the potential energy, hence option (B) is the correct answer.
Additional information:
The gravitational potential is a scalar field that affects all objects with mass. The gravitational potential energy is the potential energy of a specific object in this field, so in other words, it depends on mass. It's like potential is always there, and the energy is a single number attached to a certain object which represents how much the object experiences the field.
Note: The negative sign in the equation of gravitational potential energy indicates that the intensity of the energy decreases as the height above the Earth’s surface increases. The students should not think that the magnitude of energy decreases below zero, which is never possible in nature.
$U = - \dfrac{{GMm}}{r}$
Where G=gravitational constant, M=mass of the earth, m=mass of the body, and r=distance of body from the centre of the earth. Calculate the two potential energies one at surface of earth and other at height equal to R, then gain in potential energy is given by difference in two potential energies.
Complete step by step solution:
Step1: Calculate the gravitational potential energy at the surface of the earth.
The gravitational potential energy of an object is given by the following equation-
$U = - \dfrac{{GMm}}{r}$
Where G=gravitational constant, M=mass of the earth, m=mass of the body, and r=distance of body from the centre of the earth.
At earth’s surface r=R
Therefore,
${U_1} = - \dfrac{{GMm}}{R}$
Step2: calculate the gravitational potential energy at a height of R.
Therefore, total distance from centre of earth (r)= R+R=2R
Gravitational potential energy at this height is given by-
${U_2} = - \dfrac{{GMm}}{{2R}}$
Step3: Calculate the gain in potential energy.
Therefore,
$\Delta U = {U_2} - {U_1}$
$\Delta U = - \dfrac{{GMm}}{{2R}} + \dfrac{{GMm}}{R}$
$ \Rightarrow \Delta U = \dfrac{{GMm}}{{2R}}$
Also, acceleration due to gravity is given by-
$g = \dfrac{{GM}}{{{R^2}}}$
$ \Rightarrow GM = g{R^2}$
Substituting above, we get –
$\Delta U = \dfrac{{(g{R^2})m}}{{2R}}$
$\Delta U = \dfrac{{mgR}}{2}$
Which is gain in the potential energy, hence option (B) is the correct answer.
Additional information:
The gravitational potential is a scalar field that affects all objects with mass. The gravitational potential energy is the potential energy of a specific object in this field, so in other words, it depends on mass. It's like potential is always there, and the energy is a single number attached to a certain object which represents how much the object experiences the field.
Note: The negative sign in the equation of gravitational potential energy indicates that the intensity of the energy decreases as the height above the Earth’s surface increases. The students should not think that the magnitude of energy decreases below zero, which is never possible in nature.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
Derive an expression for maximum speed of a car on class 11 physics JEE_Main
The process requiring the absorption of energy is A class 11 chemistry JEE_Main
A cylinder of 10 Lcapacity at 300 Kcontaining the Hegas class 11 chemistry JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
A scooterist sees a bus 1km ahead of him moving with class 11 physics JEE_Main