
If \[{f_r}(x),{g_r}(x),{h_r}(x),r = 1,2,3\] are polynomials in \[x\] such that \[{f_r}(a) = {g_r}(a) = {h_r}(a),r = 1,2,3\] and \[F = \left( {\begin{array}{*{20}{c}}
{{f_1}(x)}&{{f_2}(x)}&{{f_3}(x)} \\
{{g_1}(x)}&{{g_2}(x)}&{{g_3}(x)} \\
{{h_1}(x)}&{{h_2}(x)}&{{h_3}(x)}
\end{array}} \right)\] then, \[F'(x)\] at \[x = a\] is ____________.
Answer
171.3k+ views
Hint: Differentiation: Differentiation is the area of change with respect to the input.
The value of differentiation of a constant term is always zero.
Product rule of differentiation: Let us consider \[f(x),g(x)\] be the function of \[x.\]
Then, \[\dfrac{d}{{dx}}[f(x)g(x)] = \dfrac{d}{{dx}}[f(x)]g(x) + f(x)\dfrac{d}{{dx}}[g(x)] = f'(x)g(x) + f(x)g'(x)\]
Complete step-by-step answer:
It is given that,
\[F = \det \left( {\begin{array}{*{20}{c}}
{{f_1}(x)}&{{f_2}(x)}&{{f_3}(x)} \\
{{g_1}(x)}&{{g_2}(x)}&{{g_3}(x)} \\
{{h_1}(x)}&{{h_2}(x)}&{{h_3}(x)}
\end{array}} \right)\]
Where, \[{f_r}(x),{g_r}(x),{h_r}(x),r = 1,2,3\] are polynomials in\[x\].
Differentiate \[F\] with respect to \[x\] we get,
\[F' = \det \left( {\begin{array}{*{20}{c}}
{f{'_1}(x)}&{f{'_2}(x)}&{f{'_3}(x)} \\
{{g_1}(x)}&{{g_2}(x)}&{{g_3}(x)} \\
{{h_1}(x)}&{{h_2}(x)}&{{h_3}(x)}
\end{array}} \right) + \det \left( {\begin{array}{*{20}{c}}
{{f_1}(x)}&{{f_2}(x)}&{{f_3}(x)} \\
{{g_1}'(x)}&{{g_2}'(x)}&{{g_3}'(x)} \\
{{h_1}(x)}&{{h_2}(x)}&{{h_3}(x)}
\end{array}} \right) + \det \left( {\begin{array}{*{20}{c}}
{{f_1}(x)}&{{f_2}(x)}&{{f_3}(x)} \\
{{g_1}(x)}&{{g_2}(x)}&{{g_3}(x)} \\
{h{'_1}(x)}&{h{'_2}(x)}&{h{'_3}(x)}
\end{array}} \right)\]\[x = a\]
Substitute in \[F\] we get,
\[F' = \det \left( {\begin{array}{*{20}{c}}
{f{'_1}(a)}&{f{'_2}(a)}&{f{'_3}(a)} \\
{{g_1}(a)}&{{g_2}(a)}&{{g_3}(a)} \\
{{h_1}(a)}&{{h_2}(a)}&{{h_3}(a)}
\end{array}} \right) + \det \left( {\begin{array}{*{20}{c}}
{f{'_1}(a)}&{f{'_2}(a)}&{f{'_3}(a)} \\
{{g_1}(a)}&{{g_2}(a)}&{{g_3}(a)} \\
{{h_1}(a)}&{{h_2}(a)}&{{h_3}(a)}
\end{array}} \right) + \det \left( {\begin{array}{*{20}{c}}
{{f_1}(a)}&{{f_2}(a)}&{{f_3}(a)} \\
{{g_1}(a)}&{{g_2}(a)}&{{g_3}(a)} \\
{h{'_1}(a)}&{h{'_2}(a)}&{h{'_3}(a)}
\end{array}} \right)\]
As per the given condition, \[{f_r}(a) = {g_r}(a) = {h_r}(a),r = 1,2,3\]
Also we know by following the property of determinant, \[\det \left( {\begin{array}{*{20}{c}}
a&b&c \\
a&b&c \\
a&b&c
\end{array}} \right) = 0\]we get,
\[F' = 0\]
Hence, \[F'(x)\] at \[x = a\] is \[0.\]
Note: The determinant of a matrix is a special number that can be calculated from a square matrix. The determinant helps us to find the inverse of a matrix.
Differentiation helps us to find rates of change. For example, it helps us to find the rate of change of velocity with respect to time (which is known as acceleration). It also allows us to find the rate of change of x with respect to y, which on a graph of y against x is the gradient of the curve (which is known as slope). There are a number of simple rules which can be used to allow us to differentiate many functions easily.
If y = some function of x (in other words if y is equal to an expression containing numbers and x's), then the derivative of y (with respect to x) is pronounced "dee y by dee x”.
The differentiation of matrices is the place where every one of us would make mistakes so we should be very careful while doing it.
The value of differentiation of a constant term is always zero.
Product rule of differentiation: Let us consider \[f(x),g(x)\] be the function of \[x.\]
Then, \[\dfrac{d}{{dx}}[f(x)g(x)] = \dfrac{d}{{dx}}[f(x)]g(x) + f(x)\dfrac{d}{{dx}}[g(x)] = f'(x)g(x) + f(x)g'(x)\]
Complete step-by-step answer:
It is given that,
\[F = \det \left( {\begin{array}{*{20}{c}}
{{f_1}(x)}&{{f_2}(x)}&{{f_3}(x)} \\
{{g_1}(x)}&{{g_2}(x)}&{{g_3}(x)} \\
{{h_1}(x)}&{{h_2}(x)}&{{h_3}(x)}
\end{array}} \right)\]
Where, \[{f_r}(x),{g_r}(x),{h_r}(x),r = 1,2,3\] are polynomials in\[x\].
Differentiate \[F\] with respect to \[x\] we get,
\[F' = \det \left( {\begin{array}{*{20}{c}}
{f{'_1}(x)}&{f{'_2}(x)}&{f{'_3}(x)} \\
{{g_1}(x)}&{{g_2}(x)}&{{g_3}(x)} \\
{{h_1}(x)}&{{h_2}(x)}&{{h_3}(x)}
\end{array}} \right) + \det \left( {\begin{array}{*{20}{c}}
{{f_1}(x)}&{{f_2}(x)}&{{f_3}(x)} \\
{{g_1}'(x)}&{{g_2}'(x)}&{{g_3}'(x)} \\
{{h_1}(x)}&{{h_2}(x)}&{{h_3}(x)}
\end{array}} \right) + \det \left( {\begin{array}{*{20}{c}}
{{f_1}(x)}&{{f_2}(x)}&{{f_3}(x)} \\
{{g_1}(x)}&{{g_2}(x)}&{{g_3}(x)} \\
{h{'_1}(x)}&{h{'_2}(x)}&{h{'_3}(x)}
\end{array}} \right)\]\[x = a\]
Substitute in \[F\] we get,
\[F' = \det \left( {\begin{array}{*{20}{c}}
{f{'_1}(a)}&{f{'_2}(a)}&{f{'_3}(a)} \\
{{g_1}(a)}&{{g_2}(a)}&{{g_3}(a)} \\
{{h_1}(a)}&{{h_2}(a)}&{{h_3}(a)}
\end{array}} \right) + \det \left( {\begin{array}{*{20}{c}}
{f{'_1}(a)}&{f{'_2}(a)}&{f{'_3}(a)} \\
{{g_1}(a)}&{{g_2}(a)}&{{g_3}(a)} \\
{{h_1}(a)}&{{h_2}(a)}&{{h_3}(a)}
\end{array}} \right) + \det \left( {\begin{array}{*{20}{c}}
{{f_1}(a)}&{{f_2}(a)}&{{f_3}(a)} \\
{{g_1}(a)}&{{g_2}(a)}&{{g_3}(a)} \\
{h{'_1}(a)}&{h{'_2}(a)}&{h{'_3}(a)}
\end{array}} \right)\]
As per the given condition, \[{f_r}(a) = {g_r}(a) = {h_r}(a),r = 1,2,3\]
Also we know by following the property of determinant, \[\det \left( {\begin{array}{*{20}{c}}
a&b&c \\
a&b&c \\
a&b&c
\end{array}} \right) = 0\]we get,
\[F' = 0\]
Hence, \[F'(x)\] at \[x = a\] is \[0.\]
Note: The determinant of a matrix is a special number that can be calculated from a square matrix. The determinant helps us to find the inverse of a matrix.
Differentiation helps us to find rates of change. For example, it helps us to find the rate of change of velocity with respect to time (which is known as acceleration). It also allows us to find the rate of change of x with respect to y, which on a graph of y against x is the gradient of the curve (which is known as slope). There are a number of simple rules which can be used to allow us to differentiate many functions easily.
If y = some function of x (in other words if y is equal to an expression containing numbers and x's), then the derivative of y (with respect to x) is pronounced "dee y by dee x”.
The differentiation of matrices is the place where every one of us would make mistakes so we should be very careful while doing it.
Recently Updated Pages
Molarity vs Molality: Definitions, Formulas & Key Differences

Preparation of Hydrogen Gas: Methods & Uses Explained

Polymers in Chemistry: Definition, Types, Examples & Uses

P Block Elements: Definition, Groups, Trends & Properties for JEE/NEET

Order of Reaction in Chemistry: Definition, Formula & Examples

Hydrocarbons: Types, Formula, Structure & Examples Explained

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Instantaneous Velocity - Formula based Examples for JEE

What is Hybridisation in Chemistry?

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Collision - Important Concepts and Tips for JEE
