If \[{f_r}(x),{g_r}(x),{h_r}(x),r = 1,2,3\] are polynomials in \[x\] such that \[{f_r}(a) = {g_r}(a) = {h_r}(a),r = 1,2,3\] and \[F = \left( {\begin{array}{*{20}{c}}
{{f_1}(x)}&{{f_2}(x)}&{{f_3}(x)} \\
{{g_1}(x)}&{{g_2}(x)}&{{g_3}(x)} \\
{{h_1}(x)}&{{h_2}(x)}&{{h_3}(x)}
\end{array}} \right)\] then, \[F'(x)\] at \[x = a\] is ____________.
Answer
Verified
115.8k+ views
Hint: Differentiation: Differentiation is the area of change with respect to the input.
The value of differentiation of a constant term is always zero.
Product rule of differentiation: Let us consider \[f(x),g(x)\] be the function of \[x.\]
Then, \[\dfrac{d}{{dx}}[f(x)g(x)] = \dfrac{d}{{dx}}[f(x)]g(x) + f(x)\dfrac{d}{{dx}}[g(x)] = f'(x)g(x) + f(x)g'(x)\]
Complete step-by-step answer:
It is given that,
\[F = \det \left( {\begin{array}{*{20}{c}}
{{f_1}(x)}&{{f_2}(x)}&{{f_3}(x)} \\
{{g_1}(x)}&{{g_2}(x)}&{{g_3}(x)} \\
{{h_1}(x)}&{{h_2}(x)}&{{h_3}(x)}
\end{array}} \right)\]
Where, \[{f_r}(x),{g_r}(x),{h_r}(x),r = 1,2,3\] are polynomials in\[x\].
Differentiate \[F\] with respect to \[x\] we get,
\[F' = \det \left( {\begin{array}{*{20}{c}}
{f{'_1}(x)}&{f{'_2}(x)}&{f{'_3}(x)} \\
{{g_1}(x)}&{{g_2}(x)}&{{g_3}(x)} \\
{{h_1}(x)}&{{h_2}(x)}&{{h_3}(x)}
\end{array}} \right) + \det \left( {\begin{array}{*{20}{c}}
{{f_1}(x)}&{{f_2}(x)}&{{f_3}(x)} \\
{{g_1}'(x)}&{{g_2}'(x)}&{{g_3}'(x)} \\
{{h_1}(x)}&{{h_2}(x)}&{{h_3}(x)}
\end{array}} \right) + \det \left( {\begin{array}{*{20}{c}}
{{f_1}(x)}&{{f_2}(x)}&{{f_3}(x)} \\
{{g_1}(x)}&{{g_2}(x)}&{{g_3}(x)} \\
{h{'_1}(x)}&{h{'_2}(x)}&{h{'_3}(x)}
\end{array}} \right)\]\[x = a\]
Substitute in \[F\] we get,
\[F' = \det \left( {\begin{array}{*{20}{c}}
{f{'_1}(a)}&{f{'_2}(a)}&{f{'_3}(a)} \\
{{g_1}(a)}&{{g_2}(a)}&{{g_3}(a)} \\
{{h_1}(a)}&{{h_2}(a)}&{{h_3}(a)}
\end{array}} \right) + \det \left( {\begin{array}{*{20}{c}}
{f{'_1}(a)}&{f{'_2}(a)}&{f{'_3}(a)} \\
{{g_1}(a)}&{{g_2}(a)}&{{g_3}(a)} \\
{{h_1}(a)}&{{h_2}(a)}&{{h_3}(a)}
\end{array}} \right) + \det \left( {\begin{array}{*{20}{c}}
{{f_1}(a)}&{{f_2}(a)}&{{f_3}(a)} \\
{{g_1}(a)}&{{g_2}(a)}&{{g_3}(a)} \\
{h{'_1}(a)}&{h{'_2}(a)}&{h{'_3}(a)}
\end{array}} \right)\]
As per the given condition, \[{f_r}(a) = {g_r}(a) = {h_r}(a),r = 1,2,3\]
Also we know by following the property of determinant, \[\det \left( {\begin{array}{*{20}{c}}
a&b&c \\
a&b&c \\
a&b&c
\end{array}} \right) = 0\]we get,
\[F' = 0\]
Hence, \[F'(x)\] at \[x = a\] is \[0.\]
Note: The determinant of a matrix is a special number that can be calculated from a square matrix. The determinant helps us to find the inverse of a matrix.
Differentiation helps us to find rates of change. For example, it helps us to find the rate of change of velocity with respect to time (which is known as acceleration). It also allows us to find the rate of change of x with respect to y, which on a graph of y against x is the gradient of the curve (which is known as slope). There are a number of simple rules which can be used to allow us to differentiate many functions easily.
If y = some function of x (in other words if y is equal to an expression containing numbers and x's), then the derivative of y (with respect to x) is pronounced "dee y by dee x”.
The differentiation of matrices is the place where every one of us would make mistakes so we should be very careful while doing it.
The value of differentiation of a constant term is always zero.
Product rule of differentiation: Let us consider \[f(x),g(x)\] be the function of \[x.\]
Then, \[\dfrac{d}{{dx}}[f(x)g(x)] = \dfrac{d}{{dx}}[f(x)]g(x) + f(x)\dfrac{d}{{dx}}[g(x)] = f'(x)g(x) + f(x)g'(x)\]
Complete step-by-step answer:
It is given that,
\[F = \det \left( {\begin{array}{*{20}{c}}
{{f_1}(x)}&{{f_2}(x)}&{{f_3}(x)} \\
{{g_1}(x)}&{{g_2}(x)}&{{g_3}(x)} \\
{{h_1}(x)}&{{h_2}(x)}&{{h_3}(x)}
\end{array}} \right)\]
Where, \[{f_r}(x),{g_r}(x),{h_r}(x),r = 1,2,3\] are polynomials in\[x\].
Differentiate \[F\] with respect to \[x\] we get,
\[F' = \det \left( {\begin{array}{*{20}{c}}
{f{'_1}(x)}&{f{'_2}(x)}&{f{'_3}(x)} \\
{{g_1}(x)}&{{g_2}(x)}&{{g_3}(x)} \\
{{h_1}(x)}&{{h_2}(x)}&{{h_3}(x)}
\end{array}} \right) + \det \left( {\begin{array}{*{20}{c}}
{{f_1}(x)}&{{f_2}(x)}&{{f_3}(x)} \\
{{g_1}'(x)}&{{g_2}'(x)}&{{g_3}'(x)} \\
{{h_1}(x)}&{{h_2}(x)}&{{h_3}(x)}
\end{array}} \right) + \det \left( {\begin{array}{*{20}{c}}
{{f_1}(x)}&{{f_2}(x)}&{{f_3}(x)} \\
{{g_1}(x)}&{{g_2}(x)}&{{g_3}(x)} \\
{h{'_1}(x)}&{h{'_2}(x)}&{h{'_3}(x)}
\end{array}} \right)\]\[x = a\]
Substitute in \[F\] we get,
\[F' = \det \left( {\begin{array}{*{20}{c}}
{f{'_1}(a)}&{f{'_2}(a)}&{f{'_3}(a)} \\
{{g_1}(a)}&{{g_2}(a)}&{{g_3}(a)} \\
{{h_1}(a)}&{{h_2}(a)}&{{h_3}(a)}
\end{array}} \right) + \det \left( {\begin{array}{*{20}{c}}
{f{'_1}(a)}&{f{'_2}(a)}&{f{'_3}(a)} \\
{{g_1}(a)}&{{g_2}(a)}&{{g_3}(a)} \\
{{h_1}(a)}&{{h_2}(a)}&{{h_3}(a)}
\end{array}} \right) + \det \left( {\begin{array}{*{20}{c}}
{{f_1}(a)}&{{f_2}(a)}&{{f_3}(a)} \\
{{g_1}(a)}&{{g_2}(a)}&{{g_3}(a)} \\
{h{'_1}(a)}&{h{'_2}(a)}&{h{'_3}(a)}
\end{array}} \right)\]
As per the given condition, \[{f_r}(a) = {g_r}(a) = {h_r}(a),r = 1,2,3\]
Also we know by following the property of determinant, \[\det \left( {\begin{array}{*{20}{c}}
a&b&c \\
a&b&c \\
a&b&c
\end{array}} \right) = 0\]we get,
\[F' = 0\]
Hence, \[F'(x)\] at \[x = a\] is \[0.\]
Note: The determinant of a matrix is a special number that can be calculated from a square matrix. The determinant helps us to find the inverse of a matrix.
Differentiation helps us to find rates of change. For example, it helps us to find the rate of change of velocity with respect to time (which is known as acceleration). It also allows us to find the rate of change of x with respect to y, which on a graph of y against x is the gradient of the curve (which is known as slope). There are a number of simple rules which can be used to allow us to differentiate many functions easily.
If y = some function of x (in other words if y is equal to an expression containing numbers and x's), then the derivative of y (with respect to x) is pronounced "dee y by dee x”.
The differentiation of matrices is the place where every one of us would make mistakes so we should be very careful while doing it.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main Chemistry Exam Pattern 2025 (Revised) - Vedantu
JEE Main 2023 (February 1st Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Collision - Important Concepts and Tips for JEE
Ideal and Non-Ideal Solutions Raoult's Law - JEE
Current Loop as Magnetic Dipole and Its Derivation for JEE
JEE Main 2023 January 30 Shift 2 Question Paper with Answer Keys & Solutions
JEE Main Physics Question Paper with Answer Keys and Solutions