If \[f\left( x \right)=\left\{ \begin{align}
& \sin \left[ x \right],\left[ x \right]\ne 0 \\
& 0,\left[ x \right]=0 \\
\end{align} \right.\]
where \[\left[ x \right]\] denotes the greatest integer less than or equal to x. then
(a) \[\displaystyle \lim_{x \to 0^-}f\left[ x \right]=\sin 1\]
(b) \[\displaystyle \lim_{x \to 0^+}f\left[ x \right]=0\]
(c) limit does not exist at \[x=0\]
(d) limit exist at \[x=0\]
Answer
Verified
116.4k+ views
Hint: In this question, we first need to find the value of greatest integer function when x approaches 0 from the left hand side and the right hand side. Then we get the value of the function which gives the right hand limit and left hand limit. Now, if the right hand and left hand limits are equal then the limit exists.
Complete step-by-step answer:
Now, from the given function in the question we have
\[f\left( x \right)=\left\{ \begin{align}
& \sin \left[ x \right],\left[ x \right]\ne 0 \\
& 0,\left[ x \right]=0 \\
\end{align} \right.\]
GREATEST INTEGER FUNCTION: For any real function the greatest integer function rounds-off the real number down to integer less than the number. This is denoted by \[\left[ x \right]\].
EXAMPLE:
\[\begin{align}
& \left[ 2.5 \right]=2 \\
& \left[ -1.5 \right]=-2 \\
\end{align}\]
LEFT HAND AND RIGHT HAND LIMITS:
If the value of the function at the points which are very close to a on the left tends to a definite unique number as x tends to a, then that number is called the left hand limit.
\[\displaystyle \lim_{x \to a^-}f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,f\left( a-h \right)\]
Similarly, right hand limit
\[\displaystyle \lim_{x \to a^+}f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,f\left( a+h \right)\]
Existence of Limit: \[\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)\] exists, if
\[\displaystyle \lim_{x \to a^-}f\left( x \right)=\displaystyle \lim_{x \to a^+}f\left( x \right)\]
Now, let us calculate the left hand limit for the given function
As x reaches zero from the left hand side we get,
\[x\to {{0}^{-}}\]
\[\left[ x \right]\to -1\]
As \[\left[ -0.9 \right]=-1\]
Now, the function becomes
\[f\left( x \right)=\sin \left[ x \right]\]
Now, let us find the left hand limit value
\[\Rightarrow \displaystyle \lim_{x \to 0^-}f\left[ x \right]=\displaystyle \lim_{x \to 0^-}\sin \left[ x \right]\]
Now, on substituting the corresponding value we get,
\[\Rightarrow \displaystyle \lim_{x \to 0^-}f\left[ x \right]=\sin \left( -1 \right)\]
Now, on further simplification we get,
\[\therefore \displaystyle \lim_{x \to 0^-}f\left[ x \right]=-\sin 1\]
Now, let us calculate the right hand limit of the given function
As x reaches zero from the right hand side we get,
\[x\to {{0}^{+}}\]
\[\left[ x \right]\to 0\]
As \[\left[ 0.1 \right]=0\]
Now, the function becomes
\[f\left( x \right)=0\]
Now, let us find the right hand limit value
\[\Rightarrow \displaystyle \lim_{x \to 0^+}f\left[ x \right]=\displaystyle \lim_{x \to 0^+}0\]
Now, on further simplification we get,
\[\therefore \displaystyle \lim_{x \to 0^+}f\left[ x \right]=0\]
Here, we get that the right hand limit and left hand limit values are not equal.
\[\therefore \displaystyle \lim_{x \to 0^-}f\left[ x \right]\ne \displaystyle \lim_{x \to 0^+}f\left[ x \right]\]
Thus, the limit of the given function does not exist at \[x=0\]
So, the correct answers are “Option b and c”.
Note: It is important to note that the value of the left hand limit given in the question and the value we got are not equal because sine of a negative function is negative sine function not positive. Thus, this point should not be neglected as it changes the answer.
It is also to be noted that the value of the greatest integer function when x approaches 0 from the left hand side will be -1 not 1 because when it approaches 0 from the left side the greatest integer less than will be -1 not 0.
Complete step-by-step answer:
Now, from the given function in the question we have
\[f\left( x \right)=\left\{ \begin{align}
& \sin \left[ x \right],\left[ x \right]\ne 0 \\
& 0,\left[ x \right]=0 \\
\end{align} \right.\]
GREATEST INTEGER FUNCTION: For any real function the greatest integer function rounds-off the real number down to integer less than the number. This is denoted by \[\left[ x \right]\].
EXAMPLE:
\[\begin{align}
& \left[ 2.5 \right]=2 \\
& \left[ -1.5 \right]=-2 \\
\end{align}\]
LEFT HAND AND RIGHT HAND LIMITS:
If the value of the function at the points which are very close to a on the left tends to a definite unique number as x tends to a, then that number is called the left hand limit.
\[\displaystyle \lim_{x \to a^-}f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,f\left( a-h \right)\]
Similarly, right hand limit
\[\displaystyle \lim_{x \to a^+}f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,f\left( a+h \right)\]
Existence of Limit: \[\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)\] exists, if
\[\displaystyle \lim_{x \to a^-}f\left( x \right)=\displaystyle \lim_{x \to a^+}f\left( x \right)\]
Now, let us calculate the left hand limit for the given function
As x reaches zero from the left hand side we get,
\[x\to {{0}^{-}}\]
\[\left[ x \right]\to -1\]
As \[\left[ -0.9 \right]=-1\]
Now, the function becomes
\[f\left( x \right)=\sin \left[ x \right]\]
Now, let us find the left hand limit value
\[\Rightarrow \displaystyle \lim_{x \to 0^-}f\left[ x \right]=\displaystyle \lim_{x \to 0^-}\sin \left[ x \right]\]
Now, on substituting the corresponding value we get,
\[\Rightarrow \displaystyle \lim_{x \to 0^-}f\left[ x \right]=\sin \left( -1 \right)\]
Now, on further simplification we get,
\[\therefore \displaystyle \lim_{x \to 0^-}f\left[ x \right]=-\sin 1\]
Now, let us calculate the right hand limit of the given function
As x reaches zero from the right hand side we get,
\[x\to {{0}^{+}}\]
\[\left[ x \right]\to 0\]
As \[\left[ 0.1 \right]=0\]
Now, the function becomes
\[f\left( x \right)=0\]
Now, let us find the right hand limit value
\[\Rightarrow \displaystyle \lim_{x \to 0^+}f\left[ x \right]=\displaystyle \lim_{x \to 0^+}0\]
Now, on further simplification we get,
\[\therefore \displaystyle \lim_{x \to 0^+}f\left[ x \right]=0\]
Here, we get that the right hand limit and left hand limit values are not equal.
\[\therefore \displaystyle \lim_{x \to 0^-}f\left[ x \right]\ne \displaystyle \lim_{x \to 0^+}f\left[ x \right]\]
Thus, the limit of the given function does not exist at \[x=0\]
So, the correct answers are “Option b and c”.
Note: It is important to note that the value of the left hand limit given in the question and the value we got are not equal because sine of a negative function is negative sine function not positive. Thus, this point should not be neglected as it changes the answer.
It is also to be noted that the value of the greatest integer function when x approaches 0 from the left hand side will be -1 not 1 because when it approaches 0 from the left side the greatest integer less than will be -1 not 0.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main Chemistry Exam Pattern 2025 (Revised) - Vedantu
JEE Main 2023 (February 1st Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Collision - Important Concepts and Tips for JEE
Ideal and Non-Ideal Solutions Raoult's Law - JEE
Current Loop as Magnetic Dipole and Its Derivation for JEE
JEE Main 2023 January 30 Shift 2 Question Paper with Answer Keys & Solutions
JEE Main Physics Question Paper with Answer Keys and Solutions