
If \[f\left( x \right)=\left\{ \begin{align}
& \sin \left[ x \right],\left[ x \right]\ne 0 \\
& 0,\left[ x \right]=0 \\
\end{align} \right.\]
where \[\left[ x \right]\] denotes the greatest integer less than or equal to x. then
(a) \[\displaystyle \lim_{x \to 0^-}f\left[ x \right]=\sin 1\]
(b) \[\displaystyle \lim_{x \to 0^+}f\left[ x \right]=0\]
(c) limit does not exist at \[x=0\]
(d) limit exist at \[x=0\]
Answer
152.7k+ views
Hint: In this question, we first need to find the value of greatest integer function when x approaches 0 from the left hand side and the right hand side. Then we get the value of the function which gives the right hand limit and left hand limit. Now, if the right hand and left hand limits are equal then the limit exists.
Complete step-by-step answer:
Now, from the given function in the question we have
\[f\left( x \right)=\left\{ \begin{align}
& \sin \left[ x \right],\left[ x \right]\ne 0 \\
& 0,\left[ x \right]=0 \\
\end{align} \right.\]
GREATEST INTEGER FUNCTION: For any real function the greatest integer function rounds-off the real number down to integer less than the number. This is denoted by \[\left[ x \right]\].
EXAMPLE:
\[\begin{align}
& \left[ 2.5 \right]=2 \\
& \left[ -1.5 \right]=-2 \\
\end{align}\]
LEFT HAND AND RIGHT HAND LIMITS:
If the value of the function at the points which are very close to a on the left tends to a definite unique number as x tends to a, then that number is called the left hand limit.
\[\displaystyle \lim_{x \to a^-}f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,f\left( a-h \right)\]
Similarly, right hand limit
\[\displaystyle \lim_{x \to a^+}f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,f\left( a+h \right)\]
Existence of Limit: \[\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)\] exists, if
\[\displaystyle \lim_{x \to a^-}f\left( x \right)=\displaystyle \lim_{x \to a^+}f\left( x \right)\]
Now, let us calculate the left hand limit for the given function
As x reaches zero from the left hand side we get,
\[x\to {{0}^{-}}\]
\[\left[ x \right]\to -1\]
As \[\left[ -0.9 \right]=-1\]
Now, the function becomes
\[f\left( x \right)=\sin \left[ x \right]\]
Now, let us find the left hand limit value
\[\Rightarrow \displaystyle \lim_{x \to 0^-}f\left[ x \right]=\displaystyle \lim_{x \to 0^-}\sin \left[ x \right]\]
Now, on substituting the corresponding value we get,
\[\Rightarrow \displaystyle \lim_{x \to 0^-}f\left[ x \right]=\sin \left( -1 \right)\]
Now, on further simplification we get,
\[\therefore \displaystyle \lim_{x \to 0^-}f\left[ x \right]=-\sin 1\]
Now, let us calculate the right hand limit of the given function
As x reaches zero from the right hand side we get,
\[x\to {{0}^{+}}\]
\[\left[ x \right]\to 0\]
As \[\left[ 0.1 \right]=0\]
Now, the function becomes
\[f\left( x \right)=0\]
Now, let us find the right hand limit value
\[\Rightarrow \displaystyle \lim_{x \to 0^+}f\left[ x \right]=\displaystyle \lim_{x \to 0^+}0\]
Now, on further simplification we get,
\[\therefore \displaystyle \lim_{x \to 0^+}f\left[ x \right]=0\]
Here, we get that the right hand limit and left hand limit values are not equal.
\[\therefore \displaystyle \lim_{x \to 0^-}f\left[ x \right]\ne \displaystyle \lim_{x \to 0^+}f\left[ x \right]\]
Thus, the limit of the given function does not exist at \[x=0\]
So, the correct answers are “Option b and c”.
Note: It is important to note that the value of the left hand limit given in the question and the value we got are not equal because sine of a negative function is negative sine function not positive. Thus, this point should not be neglected as it changes the answer.
It is also to be noted that the value of the greatest integer function when x approaches 0 from the left hand side will be -1 not 1 because when it approaches 0 from the left side the greatest integer less than will be -1 not 0.
Complete step-by-step answer:
Now, from the given function in the question we have
\[f\left( x \right)=\left\{ \begin{align}
& \sin \left[ x \right],\left[ x \right]\ne 0 \\
& 0,\left[ x \right]=0 \\
\end{align} \right.\]
GREATEST INTEGER FUNCTION: For any real function the greatest integer function rounds-off the real number down to integer less than the number. This is denoted by \[\left[ x \right]\].
EXAMPLE:
\[\begin{align}
& \left[ 2.5 \right]=2 \\
& \left[ -1.5 \right]=-2 \\
\end{align}\]
LEFT HAND AND RIGHT HAND LIMITS:
If the value of the function at the points which are very close to a on the left tends to a definite unique number as x tends to a, then that number is called the left hand limit.
\[\displaystyle \lim_{x \to a^-}f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,f\left( a-h \right)\]
Similarly, right hand limit
\[\displaystyle \lim_{x \to a^+}f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,f\left( a+h \right)\]
Existence of Limit: \[\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)\] exists, if
\[\displaystyle \lim_{x \to a^-}f\left( x \right)=\displaystyle \lim_{x \to a^+}f\left( x \right)\]
Now, let us calculate the left hand limit for the given function
As x reaches zero from the left hand side we get,
\[x\to {{0}^{-}}\]
\[\left[ x \right]\to -1\]
As \[\left[ -0.9 \right]=-1\]
Now, the function becomes
\[f\left( x \right)=\sin \left[ x \right]\]
Now, let us find the left hand limit value
\[\Rightarrow \displaystyle \lim_{x \to 0^-}f\left[ x \right]=\displaystyle \lim_{x \to 0^-}\sin \left[ x \right]\]
Now, on substituting the corresponding value we get,
\[\Rightarrow \displaystyle \lim_{x \to 0^-}f\left[ x \right]=\sin \left( -1 \right)\]
Now, on further simplification we get,
\[\therefore \displaystyle \lim_{x \to 0^-}f\left[ x \right]=-\sin 1\]
Now, let us calculate the right hand limit of the given function
As x reaches zero from the right hand side we get,
\[x\to {{0}^{+}}\]
\[\left[ x \right]\to 0\]
As \[\left[ 0.1 \right]=0\]
Now, the function becomes
\[f\left( x \right)=0\]
Now, let us find the right hand limit value
\[\Rightarrow \displaystyle \lim_{x \to 0^+}f\left[ x \right]=\displaystyle \lim_{x \to 0^+}0\]
Now, on further simplification we get,
\[\therefore \displaystyle \lim_{x \to 0^+}f\left[ x \right]=0\]
Here, we get that the right hand limit and left hand limit values are not equal.
\[\therefore \displaystyle \lim_{x \to 0^-}f\left[ x \right]\ne \displaystyle \lim_{x \to 0^+}f\left[ x \right]\]
Thus, the limit of the given function does not exist at \[x=0\]
So, the correct answers are “Option b and c”.
Note: It is important to note that the value of the left hand limit given in the question and the value we got are not equal because sine of a negative function is negative sine function not positive. Thus, this point should not be neglected as it changes the answer.
It is also to be noted that the value of the greatest integer function when x approaches 0 from the left hand side will be -1 not 1 because when it approaches 0 from the left side the greatest integer less than will be -1 not 0.
Recently Updated Pages
JEE Main 2022 (June 29th Shift 2) Maths Question Paper with Answer Key

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 29th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 26th Shift 2) Chemistry Question Paper with Answer Key

JEE Main 2022 (June 26th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (June 29th Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Electrical Field of Charged Spherical Shell - JEE

Ideal and Non-Ideal Solutions Raoult's Law - JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
