
If $f\left( x \right) = \int {\dfrac{{5{x^8} + 7{x^6}}}{{{{\left( {{x^2} + 1 + 2{x^7}} \right)}^2}}}dx} $, $\left( {x \ge 0} \right)$, $f\left( 0 \right) = 0$ and $f\left( 1 \right) = \dfrac{1}{k}$, then what is the value of $k$?
Answer
161.1k+ views
Hint: First we divide the numerator and denominator by ${x^{14}}$. By using the substitution method we will calculate the value of $f\left( x \right)$. After that, substitute $x=1$ in the equation $f\left( x \right)$ and compare with $f\left( 1 \right) = \dfrac{1}{k}$ to get the value of $k$.
Formula Used:
$\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$
$\int {\dfrac{1}{{{x^2}}}} dx = - \dfrac{1}{x} + c$
Complete step by step solution:
Given integration is
$f\left( x \right) = \int {\dfrac{{5{x^8} + 7{x^6}}}{{{{\left( {{x^2} + 1 + 2{x^7}} \right)}^2}}}dx} $
Taking common ${x^7}$ from the numerator
$f\left( x \right) = \int {\dfrac{{5{x^8} + 7{x^6}}}{{{{\left\{ {{x^7}\left( {\dfrac{1}{{{x^5}}} + \dfrac{1}{{{x^7}}} + 2} \right)} \right\}}^2}}}dx} $
$ \Rightarrow f\left( x \right) = \int {\dfrac{{5{x^8} + 7{x^6}}}{{{x^{14}}{{\left( {\dfrac{1}{{{x^5}}} + \dfrac{1}{{{x^7}}} + 2} \right)}^2}}}dx} $
Now divide the numerator and denominator by ${x^{14}}$
$f\left( x \right) = \int {\dfrac{{\dfrac{5}{{{x^6}}} + \dfrac{7}{{{x^8}}}}}{{{{\left( {\dfrac{1}{{{x^5}}} + \dfrac{1}{{{x^7}}} + 2} \right)}^2}}}dx} $
Assume that $\dfrac{1}{{{x^5}}} + \dfrac{1}{{{x^7}}} + 2 = z$
Differentiate both sides
$\left( {\dfrac{{ - 5}}{{{x^6}}} + \dfrac{{ - 7}}{{{x^8}}}} \right)dx = dz$
$ \Rightarrow \left( {\dfrac{5}{{{x^6}}} + \dfrac{7}{{{x^8}}}} \right)dx = - dz$
Putting $\left( {\dfrac{5}{{{x^6}}} + \dfrac{7}{{{x^8}}}} \right)dx = - dz$ and $\dfrac{1}{{{x^5}}} + \dfrac{1}{{{x^7}}} + 2 = z$ in the given function $f\left( x \right) = \int {\dfrac{{\dfrac{5}{{{x^6}}} + \dfrac{7}{{{x^8}}}}}{{{{\left( {\dfrac{1}{{{x^5}}} + \dfrac{1}{{{x^7}}} + 2} \right)}^2}}}dx} $.
$ \Rightarrow f\left( x \right) = \int {\dfrac{1}{{{{\left( z \right)}^2}}}\left( { - dz} \right)} $
Now applying the integration formula $\int {\dfrac{1}{{{x^2}}}} dx = - \dfrac{1}{x} + c$
$ \Rightarrow f\left( x \right) = \dfrac{1}{z} + C$
Now substitute the value of $z$
$ \Rightarrow f\left( x \right) = \dfrac{1}{{\dfrac{1}{{{x^5}}} + \dfrac{1}{{{x^7}}} + 2}} + C$
Simplify the above equation
$ \Rightarrow f\left( x \right) = \dfrac{{{x^7}}}{{{x^2} + 1 + 2{x^7}}} + C$
Now putting $x = 0$ to calculate the value of $C$
$ \Rightarrow f\left( 0 \right) = \dfrac{{{0^7}}}{{{0^2} + 1 + 2 \cdot {0^7}}} + C$
Now putting the value of $f\left( 0 \right)$
$ \Rightarrow 0 = \dfrac{{{0^7}}}{{{0^2} + 1 + 2 \cdot {0^7}}} + C$
$ \Rightarrow 0 = C$
Therefore, the given function becomes $f\left( x \right) = \dfrac{{{x^7}}}{{{x^2} + 1 + 2{x^7}}}$.
Now putting $x = 1$ in $f\left( x \right) = \dfrac{{{x^7}}}{{{x^2} + 1 + 2{x^7}}}$.
$f\left( 1 \right) = \dfrac{{{1^7}}}{{{1^2} + 1 + 2 \cdot {1^7}}}$
Simplify the right-hand side expression
$f\left( 1 \right) = \dfrac{1}{4}$
Given that $f\left( 1 \right) = \dfrac{1}{k}$.
Thus, $\dfrac{1}{4} = \dfrac{1}{k}$
Which implies $k = 4$.
Note: If an integration is not solved directly, then we will apply the substitution method. In the given question, we are unable to solve it directly, so apply the substitution method. Then substitute x=1 in the solution and calculate the value of k.
Formula Used:
$\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$
$\int {\dfrac{1}{{{x^2}}}} dx = - \dfrac{1}{x} + c$
Complete step by step solution:
Given integration is
$f\left( x \right) = \int {\dfrac{{5{x^8} + 7{x^6}}}{{{{\left( {{x^2} + 1 + 2{x^7}} \right)}^2}}}dx} $
Taking common ${x^7}$ from the numerator
$f\left( x \right) = \int {\dfrac{{5{x^8} + 7{x^6}}}{{{{\left\{ {{x^7}\left( {\dfrac{1}{{{x^5}}} + \dfrac{1}{{{x^7}}} + 2} \right)} \right\}}^2}}}dx} $
$ \Rightarrow f\left( x \right) = \int {\dfrac{{5{x^8} + 7{x^6}}}{{{x^{14}}{{\left( {\dfrac{1}{{{x^5}}} + \dfrac{1}{{{x^7}}} + 2} \right)}^2}}}dx} $
Now divide the numerator and denominator by ${x^{14}}$
$f\left( x \right) = \int {\dfrac{{\dfrac{5}{{{x^6}}} + \dfrac{7}{{{x^8}}}}}{{{{\left( {\dfrac{1}{{{x^5}}} + \dfrac{1}{{{x^7}}} + 2} \right)}^2}}}dx} $
Assume that $\dfrac{1}{{{x^5}}} + \dfrac{1}{{{x^7}}} + 2 = z$
Differentiate both sides
$\left( {\dfrac{{ - 5}}{{{x^6}}} + \dfrac{{ - 7}}{{{x^8}}}} \right)dx = dz$
$ \Rightarrow \left( {\dfrac{5}{{{x^6}}} + \dfrac{7}{{{x^8}}}} \right)dx = - dz$
Putting $\left( {\dfrac{5}{{{x^6}}} + \dfrac{7}{{{x^8}}}} \right)dx = - dz$ and $\dfrac{1}{{{x^5}}} + \dfrac{1}{{{x^7}}} + 2 = z$ in the given function $f\left( x \right) = \int {\dfrac{{\dfrac{5}{{{x^6}}} + \dfrac{7}{{{x^8}}}}}{{{{\left( {\dfrac{1}{{{x^5}}} + \dfrac{1}{{{x^7}}} + 2} \right)}^2}}}dx} $.
$ \Rightarrow f\left( x \right) = \int {\dfrac{1}{{{{\left( z \right)}^2}}}\left( { - dz} \right)} $
Now applying the integration formula $\int {\dfrac{1}{{{x^2}}}} dx = - \dfrac{1}{x} + c$
$ \Rightarrow f\left( x \right) = \dfrac{1}{z} + C$
Now substitute the value of $z$
$ \Rightarrow f\left( x \right) = \dfrac{1}{{\dfrac{1}{{{x^5}}} + \dfrac{1}{{{x^7}}} + 2}} + C$
Simplify the above equation
$ \Rightarrow f\left( x \right) = \dfrac{{{x^7}}}{{{x^2} + 1 + 2{x^7}}} + C$
Now putting $x = 0$ to calculate the value of $C$
$ \Rightarrow f\left( 0 \right) = \dfrac{{{0^7}}}{{{0^2} + 1 + 2 \cdot {0^7}}} + C$
Now putting the value of $f\left( 0 \right)$
$ \Rightarrow 0 = \dfrac{{{0^7}}}{{{0^2} + 1 + 2 \cdot {0^7}}} + C$
$ \Rightarrow 0 = C$
Therefore, the given function becomes $f\left( x \right) = \dfrac{{{x^7}}}{{{x^2} + 1 + 2{x^7}}}$.
Now putting $x = 1$ in $f\left( x \right) = \dfrac{{{x^7}}}{{{x^2} + 1 + 2{x^7}}}$.
$f\left( 1 \right) = \dfrac{{{1^7}}}{{{1^2} + 1 + 2 \cdot {1^7}}}$
Simplify the right-hand side expression
$f\left( 1 \right) = \dfrac{1}{4}$
Given that $f\left( 1 \right) = \dfrac{1}{k}$.
Thus, $\dfrac{1}{4} = \dfrac{1}{k}$
Which implies $k = 4$.
Note: If an integration is not solved directly, then we will apply the substitution method. In the given question, we are unable to solve it directly, so apply the substitution method. Then substitute x=1 in the solution and calculate the value of k.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025 Notes

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

List of Fastest Century in IPL History
