
If \[f\left( x \right) = {e^x}g\left( x \right)\], \[g\left( 0 \right) = 2\], and \[g'\left( 0 \right) = 1\]. Then what is the value of \[f'\left( 0 \right)\]?
A. 1
B. 2
C. 3
D. 0
Answer
232.8k+ views
Hint: First, differentiate the given function with respect to \[x\]. Then substitute \[x = 0\] in the differential equation. In the end, substitute the given values in the differential equation and get the required answer.
Formula Used:
\[\dfrac{d}{{dx}}\left( {{e^x}} \right) = {e^x}\]
Product rule of differentiation: \[\dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}\]
Complete step by step solution:
The given function is \[f\left( x \right) = {e^x}g\left( x \right)\].
\[g\left( 0 \right) = 2\], and \[g'\left( 0 \right) = 1\]
Let’s differentiate the given function with respect to \[x\].
\[\dfrac{d}{{dx}}\left( {f\left( x \right)} \right) = \dfrac{d}{{dx}}\left( {{e^x}g\left( x \right)} \right)\]
Apply the product rule of differentiation on the right-hand side.
\[f'\left( x \right) = {e^x}\dfrac{d}{{dx}}\left( {g\left( x \right)} \right) + g\left( x \right)\dfrac{d}{{dx}}\left( {{e^x}} \right)\]
\[ \Rightarrow \]\[f'\left( x \right) = {e^x}g'\left( x \right) + g\left( x \right)\left( {{e^x}} \right)\] [ Since \[\dfrac{d}{{dx}}\left( {{e^x}} \right) = {e^x}\]]
Factor out the common term.
\[f'\left( x \right) = {e^x}\left[ {g'\left( x \right) + g\left( x \right)} \right]\]
Now substitute \[x = 0\] in the above function.
\[f'\left( 0 \right) = {e^0}\left[ {g'\left( 0 \right) + g\left( 0 \right)} \right]\]
\[ \Rightarrow \]\[f'\left( 0 \right) = 1\left[ {g'\left( 0 \right) + g\left( 0 \right)} \right]\] [ Since \[{e^0} = 1\]]
Substitute the given values in the above equation.
\[f'\left( 0 \right) = 1 + 2\]
\[ \Rightarrow \]\[f'\left( 0 \right) = 3\]
Hence the correct option is C.
Note: The derivative is a rate of change of a function with respect to a variable.
The \[{n^{th}}\] derivative of an exponential function \[{e^x}\] is: \[\dfrac{{{d^n}{e^x}}}{{d{x^n}}} = {e^x}\]
The derivative of an exponential function \[{e^{ax}}\] is: \[\dfrac{d}{{dx}}\left( {{e^{ax}}} \right) = a{e^{ax}}\]
Formula Used:
\[\dfrac{d}{{dx}}\left( {{e^x}} \right) = {e^x}\]
Product rule of differentiation: \[\dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}\]
Complete step by step solution:
The given function is \[f\left( x \right) = {e^x}g\left( x \right)\].
\[g\left( 0 \right) = 2\], and \[g'\left( 0 \right) = 1\]
Let’s differentiate the given function with respect to \[x\].
\[\dfrac{d}{{dx}}\left( {f\left( x \right)} \right) = \dfrac{d}{{dx}}\left( {{e^x}g\left( x \right)} \right)\]
Apply the product rule of differentiation on the right-hand side.
\[f'\left( x \right) = {e^x}\dfrac{d}{{dx}}\left( {g\left( x \right)} \right) + g\left( x \right)\dfrac{d}{{dx}}\left( {{e^x}} \right)\]
\[ \Rightarrow \]\[f'\left( x \right) = {e^x}g'\left( x \right) + g\left( x \right)\left( {{e^x}} \right)\] [ Since \[\dfrac{d}{{dx}}\left( {{e^x}} \right) = {e^x}\]]
Factor out the common term.
\[f'\left( x \right) = {e^x}\left[ {g'\left( x \right) + g\left( x \right)} \right]\]
Now substitute \[x = 0\] in the above function.
\[f'\left( 0 \right) = {e^0}\left[ {g'\left( 0 \right) + g\left( 0 \right)} \right]\]
\[ \Rightarrow \]\[f'\left( 0 \right) = 1\left[ {g'\left( 0 \right) + g\left( 0 \right)} \right]\] [ Since \[{e^0} = 1\]]
Substitute the given values in the above equation.
\[f'\left( 0 \right) = 1 + 2\]
\[ \Rightarrow \]\[f'\left( 0 \right) = 3\]
Hence the correct option is C.
Note: The derivative is a rate of change of a function with respect to a variable.
The \[{n^{th}}\] derivative of an exponential function \[{e^x}\] is: \[\dfrac{{{d^n}{e^x}}}{{d{x^n}}} = {e^x}\]
The derivative of an exponential function \[{e^{ax}}\] is: \[\dfrac{d}{{dx}}\left( {{e^{ax}}} \right) = a{e^{ax}}\]
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

