
If $f\left( x \right) = \dfrac{x}{{x - 1}}$, $x \ne 1$. Then what is the value of ${\left( {fofof....f} \right)_{17 times}}\left( x \right)$?
A. $\dfrac{x}{{x - 1}}$
B. $x$
C. ${\left( {\dfrac{x}{{x - 1}}} \right)^{17}}$
D. $\dfrac{{17x}}{{x - 1}}$
Answer
233.1k+ views
Hint: Here use the definition of a composite function and find the values. Check the composition for more functions and verify the similarities to reach the required answer.
Formula Used:
A composite function is a function created when one function is used as the input of another function.
$\left( {fof} \right)\left( x \right) = f\left( {f\left( x \right)} \right)$
Complete step by step solution:
The given function is if $f\left( x \right) = \dfrac{x}{{x - 1}}$, $x \ne 1$.
Let’s calculate the composite function of two functions.
$\left( {fof} \right)\left( x \right) = f\left( {f\left( x \right)} \right)$
Substitute the value of the given function.
$\left( {fof} \right)\left( x \right) = f\left( {\dfrac{x}{{x - 1}}} \right)$
$ \Rightarrow $$\left( {fof} \right)\left( x \right) = \dfrac{{\dfrac{x}{{x - 1}}}}{{\dfrac{x}{{x - 1}} - 1}}$
Simplify the above equation.
$\left( {fof} \right)\left( x \right) = \dfrac{{\dfrac{x}{{x - 1}}}}{{\dfrac{{x - x + 1}}{{x - 1}}}}$
$ \Rightarrow $$\left( {fof} \right)\left( x \right) = \dfrac{x}{1}$
$ \Rightarrow $$\left( {fof} \right)\left( x \right) = x$ $.....\left( 1 \right)$
Now calculate the composite function of 3 functions.
$\left( {fofof} \right)\left( x \right) = f\left( {fof\left( x \right)} \right)$
Substitute the equation $\left( 1 \right)$ in the above function.
$\left( {fofof} \right)\left( x \right) = f\left( x \right)$
$ \Rightarrow $$\left( {fofof} \right)\left( x \right) = \dfrac{x}{{x - 1}}$ $.....\left( 2 \right)$
Now calculate the composite function of 4 functions.
$\left( {fofofof} \right)\left( x \right) = f\left( {fofof\left( x \right)} \right)$
Substitute the equation $\left( 2 \right)$ in the above function.
$\left( {fofofof} \right)\left( x \right) = f\left( {\dfrac{x}{{x - 1}}} \right)$
Using the previous steps of equation $\left( 1 \right)$, we get
$\left( {fofofof} \right)\left( x \right) = x$
Clearly, we observe that
For the odd number of functions, the value of composite functions is $\dfrac{x}{{x - 1}}$.
For the even number of functions, the value of composite functions is $x$.
Since $17$ is an odd number.
So, ${\left( {fofof....f} \right)_{17 times}}\left( x \right) = \dfrac{x}{{x - 1}}$
Option ‘A’ is correct
Note: The composition of functions is a process of combining two functions. One function is performed first and its result is substituted as the input value of the second function.
The composite function of the two functions $f\left( x \right)$ and $g\left( x \right)$ is denoted as $f\left( {g\left( x \right)} \right)$ or $\left( {fog} \right)\left( x \right)$.
Formula Used:
A composite function is a function created when one function is used as the input of another function.
$\left( {fof} \right)\left( x \right) = f\left( {f\left( x \right)} \right)$
Complete step by step solution:
The given function is if $f\left( x \right) = \dfrac{x}{{x - 1}}$, $x \ne 1$.
Let’s calculate the composite function of two functions.
$\left( {fof} \right)\left( x \right) = f\left( {f\left( x \right)} \right)$
Substitute the value of the given function.
$\left( {fof} \right)\left( x \right) = f\left( {\dfrac{x}{{x - 1}}} \right)$
$ \Rightarrow $$\left( {fof} \right)\left( x \right) = \dfrac{{\dfrac{x}{{x - 1}}}}{{\dfrac{x}{{x - 1}} - 1}}$
Simplify the above equation.
$\left( {fof} \right)\left( x \right) = \dfrac{{\dfrac{x}{{x - 1}}}}{{\dfrac{{x - x + 1}}{{x - 1}}}}$
$ \Rightarrow $$\left( {fof} \right)\left( x \right) = \dfrac{x}{1}$
$ \Rightarrow $$\left( {fof} \right)\left( x \right) = x$ $.....\left( 1 \right)$
Now calculate the composite function of 3 functions.
$\left( {fofof} \right)\left( x \right) = f\left( {fof\left( x \right)} \right)$
Substitute the equation $\left( 1 \right)$ in the above function.
$\left( {fofof} \right)\left( x \right) = f\left( x \right)$
$ \Rightarrow $$\left( {fofof} \right)\left( x \right) = \dfrac{x}{{x - 1}}$ $.....\left( 2 \right)$
Now calculate the composite function of 4 functions.
$\left( {fofofof} \right)\left( x \right) = f\left( {fofof\left( x \right)} \right)$
Substitute the equation $\left( 2 \right)$ in the above function.
$\left( {fofofof} \right)\left( x \right) = f\left( {\dfrac{x}{{x - 1}}} \right)$
Using the previous steps of equation $\left( 1 \right)$, we get
$\left( {fofofof} \right)\left( x \right) = x$
Clearly, we observe that
For the odd number of functions, the value of composite functions is $\dfrac{x}{{x - 1}}$.
For the even number of functions, the value of composite functions is $x$.
Since $17$ is an odd number.
So, ${\left( {fofof....f} \right)_{17 times}}\left( x \right) = \dfrac{x}{{x - 1}}$
Option ‘A’ is correct
Note: The composition of functions is a process of combining two functions. One function is performed first and its result is substituted as the input value of the second function.
The composite function of the two functions $f\left( x \right)$ and $g\left( x \right)$ is denoted as $f\left( {g\left( x \right)} \right)$ or $\left( {fog} \right)\left( x \right)$.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

