
If \[f\left( x \right) = \dfrac{x}{{\left( {1 + x} \right)}}\] , and \[g\left( x \right) = f\left[ {f\left( x \right)} \right]\]. Then what is the value of \[g'\left( x \right)\]?
A. \[\dfrac{1}{{{{\left( {2x + 3} \right)}^2}}}\]
B. \[\dfrac{1}{{{{\left( {x + 1} \right)}^2}}}\]
C. \[\dfrac{1}{{{x^2}}}\]
D. \[\dfrac{1}{{{{\left( {2x + 1} \right)}^2}}}\]
Answer
232.8k+ views
Hint In the given question, two functions are given. By substituting the value of first function in the second composite function, we will find the value of \[g\left( x \right)\]. Then by differentiating the function \[g\left( x \right)\] with respect to \[x\], we will find the value of \[g'\left( x \right)\].
Formula used
Composite function: A function is called a composite function when one function is substituted into another function.
Quotient rule of differentiation: \[\dfrac{d}{{dx}}\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \dfrac{{g\left( x \right)\dfrac{d}{{dx}}f\left( x \right) - f\left( x \right)\dfrac{d}{{dx}}g\left( x \right)}}{{{{\left( {g\left( x \right)} \right)}^2}}}\]
Complete step by step solution:
The given functions are \[f\left( x \right) = \dfrac{x}{{\left( {1 + x} \right)}}\] and \[g\left( x \right) = f\left[ {f\left( x \right)} \right]\].
Let’s simplify the given composite function.
\[g\left( x \right) = f\left[ {f\left( x \right)} \right]\]
Substitute \[f\left( x \right) = \dfrac{x}{{\left( {1 + x} \right)}}\] in above function.
\[g\left( x \right) = f\left[ {\dfrac{x}{{\left( {1 + x} \right)}}} \right]\]
Apply the rule of the function \[f\left( x \right)\]
\[g\left( x \right) = \dfrac{{\left( {\dfrac{x}{{\left( {1 + x} \right)}}} \right)}}{{\left( {1 + \dfrac{x}{{\left( {1 + x} \right)}}} \right)}}\]
Now simplify the above function.
\[g\left( x \right) = \dfrac{{\left( {\dfrac{x}{{\left( {1 + x} \right)}}} \right)}}{{\left( {\dfrac{{1 + x + x}}{{\left( {1 + x} \right)}}} \right)}}\]
\[ \Rightarrow \]\[g\left( x \right) = \dfrac{x}{{1 + 2x}}\]
Differentiate the above function with respect to \[x\].
Apply quotient rule of differentiation \[\dfrac{d}{{dx}}\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \dfrac{{g\left( x \right)\dfrac{d}{{dx}}f\left( x \right) - f\left( x \right)\dfrac{d}{{dx}}g\left( x \right)}}{{{{\left( {g\left( x \right)} \right)}^2}}}\] on the right-hand side.
\[g'\left( x \right) = \dfrac{{\left( {1 + 2x} \right)\dfrac{d}{{dx}}\left( x \right) - x\dfrac{d}{{dx}}\left( {1 + 2x} \right)}}{{{{\left( {1 + 2x} \right)}^2}}}\]
\[ \Rightarrow \]\[g'\left( x \right) = \dfrac{{\left( {1 + 2x} \right)\left( 1 \right) - x\left( 2 \right)}}{{{{\left( {1 + 2x} \right)}^2}}}\]
Now simplify the above function.
\[g'\left( x \right) = \dfrac{{1 + 2x - 2x}}{{{{\left( {1 + 2x} \right)}^2}}}\]
\[ \Rightarrow \]\[g'\left( x \right) = \dfrac{1}{{{{\left( {1 + 2x} \right)}^2}}}\]
Hence the correct option is D.
Note: Students often get confused with the quotient rule of differentiation \[\dfrac{d}{{dx}}\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \dfrac{{g\left( x \right)\dfrac{d}{{dx}}f\left( x \right) - f\left( x \right)\dfrac{d}{{dx}}g\left( x \right)}}{{{{\left( {g\left( x \right)} \right)}^2}}}\] and \[\dfrac{d}{{dx}}\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \dfrac{{f\left( x \right)\dfrac{d}{{dx}}g\left( x \right) - g\left( x \right)\dfrac{d}{{dx}}f\left( x \right)}}{{{{\left( {g\left( x \right)} \right)}^2}}}\]. The correct quotient rule of differentiation is \[\dfrac{d}{{dx}}\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \dfrac{{g\left( x \right)\dfrac{d}{{dx}}f\left( x \right) - f\left( x \right)\dfrac{d}{{dx}}g\left( x \right)}}{{{{\left( {g\left( x \right)} \right)}^2}}}\].
Formula used
Composite function: A function is called a composite function when one function is substituted into another function.
Quotient rule of differentiation: \[\dfrac{d}{{dx}}\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \dfrac{{g\left( x \right)\dfrac{d}{{dx}}f\left( x \right) - f\left( x \right)\dfrac{d}{{dx}}g\left( x \right)}}{{{{\left( {g\left( x \right)} \right)}^2}}}\]
Complete step by step solution:
The given functions are \[f\left( x \right) = \dfrac{x}{{\left( {1 + x} \right)}}\] and \[g\left( x \right) = f\left[ {f\left( x \right)} \right]\].
Let’s simplify the given composite function.
\[g\left( x \right) = f\left[ {f\left( x \right)} \right]\]
Substitute \[f\left( x \right) = \dfrac{x}{{\left( {1 + x} \right)}}\] in above function.
\[g\left( x \right) = f\left[ {\dfrac{x}{{\left( {1 + x} \right)}}} \right]\]
Apply the rule of the function \[f\left( x \right)\]
\[g\left( x \right) = \dfrac{{\left( {\dfrac{x}{{\left( {1 + x} \right)}}} \right)}}{{\left( {1 + \dfrac{x}{{\left( {1 + x} \right)}}} \right)}}\]
Now simplify the above function.
\[g\left( x \right) = \dfrac{{\left( {\dfrac{x}{{\left( {1 + x} \right)}}} \right)}}{{\left( {\dfrac{{1 + x + x}}{{\left( {1 + x} \right)}}} \right)}}\]
\[ \Rightarrow \]\[g\left( x \right) = \dfrac{x}{{1 + 2x}}\]
Differentiate the above function with respect to \[x\].
Apply quotient rule of differentiation \[\dfrac{d}{{dx}}\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \dfrac{{g\left( x \right)\dfrac{d}{{dx}}f\left( x \right) - f\left( x \right)\dfrac{d}{{dx}}g\left( x \right)}}{{{{\left( {g\left( x \right)} \right)}^2}}}\] on the right-hand side.
\[g'\left( x \right) = \dfrac{{\left( {1 + 2x} \right)\dfrac{d}{{dx}}\left( x \right) - x\dfrac{d}{{dx}}\left( {1 + 2x} \right)}}{{{{\left( {1 + 2x} \right)}^2}}}\]
\[ \Rightarrow \]\[g'\left( x \right) = \dfrac{{\left( {1 + 2x} \right)\left( 1 \right) - x\left( 2 \right)}}{{{{\left( {1 + 2x} \right)}^2}}}\]
Now simplify the above function.
\[g'\left( x \right) = \dfrac{{1 + 2x - 2x}}{{{{\left( {1 + 2x} \right)}^2}}}\]
\[ \Rightarrow \]\[g'\left( x \right) = \dfrac{1}{{{{\left( {1 + 2x} \right)}^2}}}\]
Hence the correct option is D.
Note: Students often get confused with the quotient rule of differentiation \[\dfrac{d}{{dx}}\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \dfrac{{g\left( x \right)\dfrac{d}{{dx}}f\left( x \right) - f\left( x \right)\dfrac{d}{{dx}}g\left( x \right)}}{{{{\left( {g\left( x \right)} \right)}^2}}}\] and \[\dfrac{d}{{dx}}\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \dfrac{{f\left( x \right)\dfrac{d}{{dx}}g\left( x \right) - g\left( x \right)\dfrac{d}{{dx}}f\left( x \right)}}{{{{\left( {g\left( x \right)} \right)}^2}}}\]. The correct quotient rule of differentiation is \[\dfrac{d}{{dx}}\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \dfrac{{g\left( x \right)\dfrac{d}{{dx}}f\left( x \right) - f\left( x \right)\dfrac{d}{{dx}}g\left( x \right)}}{{{{\left( {g\left( x \right)} \right)}^2}}}\].
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Inductive Effect and Its Role in Acidic Strength

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

