
If \[f\left( x \right) = \dfrac{x}{{\left( {1 + x} \right)}}\] , and \[g\left( x \right) = f\left[ {f\left( x \right)} \right]\]. Then what is the value of \[g'\left( x \right)\]?
A. \[\dfrac{1}{{{{\left( {2x + 3} \right)}^2}}}\]
B. \[\dfrac{1}{{{{\left( {x + 1} \right)}^2}}}\]
C. \[\dfrac{1}{{{x^2}}}\]
D. \[\dfrac{1}{{{{\left( {2x + 1} \right)}^2}}}\]
Answer
162k+ views
Hint In the given question, two functions are given. By substituting the value of first function in the second composite function, we will find the value of \[g\left( x \right)\]. Then by differentiating the function \[g\left( x \right)\] with respect to \[x\], we will find the value of \[g'\left( x \right)\].
Formula used
Composite function: A function is called a composite function when one function is substituted into another function.
Quotient rule of differentiation: \[\dfrac{d}{{dx}}\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \dfrac{{g\left( x \right)\dfrac{d}{{dx}}f\left( x \right) - f\left( x \right)\dfrac{d}{{dx}}g\left( x \right)}}{{{{\left( {g\left( x \right)} \right)}^2}}}\]
Complete step by step solution:
The given functions are \[f\left( x \right) = \dfrac{x}{{\left( {1 + x} \right)}}\] and \[g\left( x \right) = f\left[ {f\left( x \right)} \right]\].
Let’s simplify the given composite function.
\[g\left( x \right) = f\left[ {f\left( x \right)} \right]\]
Substitute \[f\left( x \right) = \dfrac{x}{{\left( {1 + x} \right)}}\] in above function.
\[g\left( x \right) = f\left[ {\dfrac{x}{{\left( {1 + x} \right)}}} \right]\]
Apply the rule of the function \[f\left( x \right)\]
\[g\left( x \right) = \dfrac{{\left( {\dfrac{x}{{\left( {1 + x} \right)}}} \right)}}{{\left( {1 + \dfrac{x}{{\left( {1 + x} \right)}}} \right)}}\]
Now simplify the above function.
\[g\left( x \right) = \dfrac{{\left( {\dfrac{x}{{\left( {1 + x} \right)}}} \right)}}{{\left( {\dfrac{{1 + x + x}}{{\left( {1 + x} \right)}}} \right)}}\]
\[ \Rightarrow \]\[g\left( x \right) = \dfrac{x}{{1 + 2x}}\]
Differentiate the above function with respect to \[x\].
Apply quotient rule of differentiation \[\dfrac{d}{{dx}}\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \dfrac{{g\left( x \right)\dfrac{d}{{dx}}f\left( x \right) - f\left( x \right)\dfrac{d}{{dx}}g\left( x \right)}}{{{{\left( {g\left( x \right)} \right)}^2}}}\] on the right-hand side.
\[g'\left( x \right) = \dfrac{{\left( {1 + 2x} \right)\dfrac{d}{{dx}}\left( x \right) - x\dfrac{d}{{dx}}\left( {1 + 2x} \right)}}{{{{\left( {1 + 2x} \right)}^2}}}\]
\[ \Rightarrow \]\[g'\left( x \right) = \dfrac{{\left( {1 + 2x} \right)\left( 1 \right) - x\left( 2 \right)}}{{{{\left( {1 + 2x} \right)}^2}}}\]
Now simplify the above function.
\[g'\left( x \right) = \dfrac{{1 + 2x - 2x}}{{{{\left( {1 + 2x} \right)}^2}}}\]
\[ \Rightarrow \]\[g'\left( x \right) = \dfrac{1}{{{{\left( {1 + 2x} \right)}^2}}}\]
Hence the correct option is D.
Note: Students often get confused with the quotient rule of differentiation \[\dfrac{d}{{dx}}\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \dfrac{{g\left( x \right)\dfrac{d}{{dx}}f\left( x \right) - f\left( x \right)\dfrac{d}{{dx}}g\left( x \right)}}{{{{\left( {g\left( x \right)} \right)}^2}}}\] and \[\dfrac{d}{{dx}}\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \dfrac{{f\left( x \right)\dfrac{d}{{dx}}g\left( x \right) - g\left( x \right)\dfrac{d}{{dx}}f\left( x \right)}}{{{{\left( {g\left( x \right)} \right)}^2}}}\]. The correct quotient rule of differentiation is \[\dfrac{d}{{dx}}\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \dfrac{{g\left( x \right)\dfrac{d}{{dx}}f\left( x \right) - f\left( x \right)\dfrac{d}{{dx}}g\left( x \right)}}{{{{\left( {g\left( x \right)} \right)}^2}}}\].
Formula used
Composite function: A function is called a composite function when one function is substituted into another function.
Quotient rule of differentiation: \[\dfrac{d}{{dx}}\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \dfrac{{g\left( x \right)\dfrac{d}{{dx}}f\left( x \right) - f\left( x \right)\dfrac{d}{{dx}}g\left( x \right)}}{{{{\left( {g\left( x \right)} \right)}^2}}}\]
Complete step by step solution:
The given functions are \[f\left( x \right) = \dfrac{x}{{\left( {1 + x} \right)}}\] and \[g\left( x \right) = f\left[ {f\left( x \right)} \right]\].
Let’s simplify the given composite function.
\[g\left( x \right) = f\left[ {f\left( x \right)} \right]\]
Substitute \[f\left( x \right) = \dfrac{x}{{\left( {1 + x} \right)}}\] in above function.
\[g\left( x \right) = f\left[ {\dfrac{x}{{\left( {1 + x} \right)}}} \right]\]
Apply the rule of the function \[f\left( x \right)\]
\[g\left( x \right) = \dfrac{{\left( {\dfrac{x}{{\left( {1 + x} \right)}}} \right)}}{{\left( {1 + \dfrac{x}{{\left( {1 + x} \right)}}} \right)}}\]
Now simplify the above function.
\[g\left( x \right) = \dfrac{{\left( {\dfrac{x}{{\left( {1 + x} \right)}}} \right)}}{{\left( {\dfrac{{1 + x + x}}{{\left( {1 + x} \right)}}} \right)}}\]
\[ \Rightarrow \]\[g\left( x \right) = \dfrac{x}{{1 + 2x}}\]
Differentiate the above function with respect to \[x\].
Apply quotient rule of differentiation \[\dfrac{d}{{dx}}\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \dfrac{{g\left( x \right)\dfrac{d}{{dx}}f\left( x \right) - f\left( x \right)\dfrac{d}{{dx}}g\left( x \right)}}{{{{\left( {g\left( x \right)} \right)}^2}}}\] on the right-hand side.
\[g'\left( x \right) = \dfrac{{\left( {1 + 2x} \right)\dfrac{d}{{dx}}\left( x \right) - x\dfrac{d}{{dx}}\left( {1 + 2x} \right)}}{{{{\left( {1 + 2x} \right)}^2}}}\]
\[ \Rightarrow \]\[g'\left( x \right) = \dfrac{{\left( {1 + 2x} \right)\left( 1 \right) - x\left( 2 \right)}}{{{{\left( {1 + 2x} \right)}^2}}}\]
Now simplify the above function.
\[g'\left( x \right) = \dfrac{{1 + 2x - 2x}}{{{{\left( {1 + 2x} \right)}^2}}}\]
\[ \Rightarrow \]\[g'\left( x \right) = \dfrac{1}{{{{\left( {1 + 2x} \right)}^2}}}\]
Hence the correct option is D.
Note: Students often get confused with the quotient rule of differentiation \[\dfrac{d}{{dx}}\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \dfrac{{g\left( x \right)\dfrac{d}{{dx}}f\left( x \right) - f\left( x \right)\dfrac{d}{{dx}}g\left( x \right)}}{{{{\left( {g\left( x \right)} \right)}^2}}}\] and \[\dfrac{d}{{dx}}\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \dfrac{{f\left( x \right)\dfrac{d}{{dx}}g\left( x \right) - g\left( x \right)\dfrac{d}{{dx}}f\left( x \right)}}{{{{\left( {g\left( x \right)} \right)}^2}}}\]. The correct quotient rule of differentiation is \[\dfrac{d}{{dx}}\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \dfrac{{g\left( x \right)\dfrac{d}{{dx}}f\left( x \right) - f\left( x \right)\dfrac{d}{{dx}}g\left( x \right)}}{{{{\left( {g\left( x \right)} \right)}^2}}}\].
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Cutoff Percentile for 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Notes
