
If \[f\left( x \right) = \dfrac{x}{{\left( {1 + x} \right)}}\] , and \[g\left( x \right) = f\left[ {f\left( x \right)} \right]\]. Then what is the value of \[g'\left( x \right)\]?
A. \[\dfrac{1}{{{{\left( {2x + 3} \right)}^2}}}\]
B. \[\dfrac{1}{{{{\left( {x + 1} \right)}^2}}}\]
C. \[\dfrac{1}{{{x^2}}}\]
D. \[\dfrac{1}{{{{\left( {2x + 1} \right)}^2}}}\]
Answer
217.2k+ views
Hint In the given question, two functions are given. By substituting the value of first function in the second composite function, we will find the value of \[g\left( x \right)\]. Then by differentiating the function \[g\left( x \right)\] with respect to \[x\], we will find the value of \[g'\left( x \right)\].
Formula used
Composite function: A function is called a composite function when one function is substituted into another function.
Quotient rule of differentiation: \[\dfrac{d}{{dx}}\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \dfrac{{g\left( x \right)\dfrac{d}{{dx}}f\left( x \right) - f\left( x \right)\dfrac{d}{{dx}}g\left( x \right)}}{{{{\left( {g\left( x \right)} \right)}^2}}}\]
Complete step by step solution:
The given functions are \[f\left( x \right) = \dfrac{x}{{\left( {1 + x} \right)}}\] and \[g\left( x \right) = f\left[ {f\left( x \right)} \right]\].
Let’s simplify the given composite function.
\[g\left( x \right) = f\left[ {f\left( x \right)} \right]\]
Substitute \[f\left( x \right) = \dfrac{x}{{\left( {1 + x} \right)}}\] in above function.
\[g\left( x \right) = f\left[ {\dfrac{x}{{\left( {1 + x} \right)}}} \right]\]
Apply the rule of the function \[f\left( x \right)\]
\[g\left( x \right) = \dfrac{{\left( {\dfrac{x}{{\left( {1 + x} \right)}}} \right)}}{{\left( {1 + \dfrac{x}{{\left( {1 + x} \right)}}} \right)}}\]
Now simplify the above function.
\[g\left( x \right) = \dfrac{{\left( {\dfrac{x}{{\left( {1 + x} \right)}}} \right)}}{{\left( {\dfrac{{1 + x + x}}{{\left( {1 + x} \right)}}} \right)}}\]
\[ \Rightarrow \]\[g\left( x \right) = \dfrac{x}{{1 + 2x}}\]
Differentiate the above function with respect to \[x\].
Apply quotient rule of differentiation \[\dfrac{d}{{dx}}\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \dfrac{{g\left( x \right)\dfrac{d}{{dx}}f\left( x \right) - f\left( x \right)\dfrac{d}{{dx}}g\left( x \right)}}{{{{\left( {g\left( x \right)} \right)}^2}}}\] on the right-hand side.
\[g'\left( x \right) = \dfrac{{\left( {1 + 2x} \right)\dfrac{d}{{dx}}\left( x \right) - x\dfrac{d}{{dx}}\left( {1 + 2x} \right)}}{{{{\left( {1 + 2x} \right)}^2}}}\]
\[ \Rightarrow \]\[g'\left( x \right) = \dfrac{{\left( {1 + 2x} \right)\left( 1 \right) - x\left( 2 \right)}}{{{{\left( {1 + 2x} \right)}^2}}}\]
Now simplify the above function.
\[g'\left( x \right) = \dfrac{{1 + 2x - 2x}}{{{{\left( {1 + 2x} \right)}^2}}}\]
\[ \Rightarrow \]\[g'\left( x \right) = \dfrac{1}{{{{\left( {1 + 2x} \right)}^2}}}\]
Hence the correct option is D.
Note: Students often get confused with the quotient rule of differentiation \[\dfrac{d}{{dx}}\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \dfrac{{g\left( x \right)\dfrac{d}{{dx}}f\left( x \right) - f\left( x \right)\dfrac{d}{{dx}}g\left( x \right)}}{{{{\left( {g\left( x \right)} \right)}^2}}}\] and \[\dfrac{d}{{dx}}\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \dfrac{{f\left( x \right)\dfrac{d}{{dx}}g\left( x \right) - g\left( x \right)\dfrac{d}{{dx}}f\left( x \right)}}{{{{\left( {g\left( x \right)} \right)}^2}}}\]. The correct quotient rule of differentiation is \[\dfrac{d}{{dx}}\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \dfrac{{g\left( x \right)\dfrac{d}{{dx}}f\left( x \right) - f\left( x \right)\dfrac{d}{{dx}}g\left( x \right)}}{{{{\left( {g\left( x \right)} \right)}^2}}}\].
Formula used
Composite function: A function is called a composite function when one function is substituted into another function.
Quotient rule of differentiation: \[\dfrac{d}{{dx}}\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \dfrac{{g\left( x \right)\dfrac{d}{{dx}}f\left( x \right) - f\left( x \right)\dfrac{d}{{dx}}g\left( x \right)}}{{{{\left( {g\left( x \right)} \right)}^2}}}\]
Complete step by step solution:
The given functions are \[f\left( x \right) = \dfrac{x}{{\left( {1 + x} \right)}}\] and \[g\left( x \right) = f\left[ {f\left( x \right)} \right]\].
Let’s simplify the given composite function.
\[g\left( x \right) = f\left[ {f\left( x \right)} \right]\]
Substitute \[f\left( x \right) = \dfrac{x}{{\left( {1 + x} \right)}}\] in above function.
\[g\left( x \right) = f\left[ {\dfrac{x}{{\left( {1 + x} \right)}}} \right]\]
Apply the rule of the function \[f\left( x \right)\]
\[g\left( x \right) = \dfrac{{\left( {\dfrac{x}{{\left( {1 + x} \right)}}} \right)}}{{\left( {1 + \dfrac{x}{{\left( {1 + x} \right)}}} \right)}}\]
Now simplify the above function.
\[g\left( x \right) = \dfrac{{\left( {\dfrac{x}{{\left( {1 + x} \right)}}} \right)}}{{\left( {\dfrac{{1 + x + x}}{{\left( {1 + x} \right)}}} \right)}}\]
\[ \Rightarrow \]\[g\left( x \right) = \dfrac{x}{{1 + 2x}}\]
Differentiate the above function with respect to \[x\].
Apply quotient rule of differentiation \[\dfrac{d}{{dx}}\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \dfrac{{g\left( x \right)\dfrac{d}{{dx}}f\left( x \right) - f\left( x \right)\dfrac{d}{{dx}}g\left( x \right)}}{{{{\left( {g\left( x \right)} \right)}^2}}}\] on the right-hand side.
\[g'\left( x \right) = \dfrac{{\left( {1 + 2x} \right)\dfrac{d}{{dx}}\left( x \right) - x\dfrac{d}{{dx}}\left( {1 + 2x} \right)}}{{{{\left( {1 + 2x} \right)}^2}}}\]
\[ \Rightarrow \]\[g'\left( x \right) = \dfrac{{\left( {1 + 2x} \right)\left( 1 \right) - x\left( 2 \right)}}{{{{\left( {1 + 2x} \right)}^2}}}\]
Now simplify the above function.
\[g'\left( x \right) = \dfrac{{1 + 2x - 2x}}{{{{\left( {1 + 2x} \right)}^2}}}\]
\[ \Rightarrow \]\[g'\left( x \right) = \dfrac{1}{{{{\left( {1 + 2x} \right)}^2}}}\]
Hence the correct option is D.
Note: Students often get confused with the quotient rule of differentiation \[\dfrac{d}{{dx}}\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \dfrac{{g\left( x \right)\dfrac{d}{{dx}}f\left( x \right) - f\left( x \right)\dfrac{d}{{dx}}g\left( x \right)}}{{{{\left( {g\left( x \right)} \right)}^2}}}\] and \[\dfrac{d}{{dx}}\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \dfrac{{f\left( x \right)\dfrac{d}{{dx}}g\left( x \right) - g\left( x \right)\dfrac{d}{{dx}}f\left( x \right)}}{{{{\left( {g\left( x \right)} \right)}^2}}}\]. The correct quotient rule of differentiation is \[\dfrac{d}{{dx}}\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \dfrac{{g\left( x \right)\dfrac{d}{{dx}}f\left( x \right) - f\left( x \right)\dfrac{d}{{dx}}g\left( x \right)}}{{{{\left( {g\left( x \right)} \right)}^2}}}\].
Recently Updated Pages
Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Field of Infinite Line Charge and Cylinders Explained

Electric Flux and Area Vector Explained Simply

Electric Field of a Charged Spherical Shell Explained

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

