
If $f\left( x \right) = {\cot^{ - 1}}\left( {\dfrac{{{x^x} - {x^{ - x}}}}{2}} \right)$ ,then ${f'}\left( 1 \right)$ is equal to
A. $ - 1$
B. $1$
C. $\log 2$
D. $ - \log 2$
Answer
217.5k+ views
Hint: In this question, we divide the given function into two separate functions, differentiate them both with respect to x, and then divide both outputs again to get differentiation of one function with respect to another.
Formula Used:
1. $\tan \left( {2\theta } \right) = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}$
2. ${\tan^{ - 1}}(x) \cdot \tan \left( x \right) = 1$
3. ${\cot^{ - 1}}\left( x \right) = - \dfrac{1}{{1 + {x^2}}}$
4. $\log {x^x} = x\log x$
5. $\log 1 = 0$
Complete step by step solution:
We are given that $f\left( x \right) = {\cot^{ - 1}}\left( {\dfrac{{{x^x} - {x^{ - x}}}}{2}} \right)$
Now we solve the given equation in simplified form, and we get
$f\left( x \right) = {\cot^{ - 1}}\left( {\dfrac{{\left( {{x^x} - \dfrac{1}{{{x^x}}}} \right)}}{2}} \right)$
$f\left( x \right) = {\cot^{ - 1}}\left( {\dfrac{{\left( {\dfrac{{{{\left( {{x^x}} \right)}^2} - 1}}{{{x^x}}}} \right)}}{2}} \right)$
$f\left( x \right) = {\cot^{ - 1}}\left( {\dfrac{{{{\left( {{x^x}} \right)}^2} - 1}}{{2{x^x}}}} \right)$
Now we know the condition that if ${x^x}$ is greater than zero then ${\cot^{ - 1}}$ changes to ${\tan^{ - 1}}$
So,
$f\left( x \right) = {\tan^{ - 1}}\left( {\dfrac{{2{x^x}}}{{1 - {{\left( {{x^x}} \right)}^2}}}} \right)$
Now we assume that ${x^x} = \tan \theta $ and $f\left( x \right) = y$
After substituting the assumed values, we get
$y = {\tan^{ - 1}}\left( {\dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}} \right)$
Now we know that $\tan \left( {2\theta } \right) = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}$
Thus, the value of $y$ becomes
$y = {\tan^{ - 1}}.\tan \left( {2\theta } \right)$
Now, by using the formula ${\tan^{ - 1}}(x) \cdot \tan \left( x \right) = 1$, we get
$y = 2\theta $
Or
$y = 2{\tan^{ - 1}}{x^x}$
Now when we differentiate with respect to x, we get
$\dfrac{{dy}}{{dx}} = \dfrac{2}{{1 + {{\left( {{x^x}} \right)}^2}}} \cdot \dfrac{d}{{dx}}\left( {{x^x}} \right)...\left( i \right)$
Now, again assuming $z = {x^x}$ and taking its differentiation, we get
$z = {x^x}$
Taking the log on both sides, we get
$\log z = \log \left( {{x^x}} \right)$
$\log z = x\log x$
Differentiate with respect to x we get
$\dfrac{1}{z}\dfrac{{dz}}{{dx}} = \left( {\log x + x \cdot \dfrac{1}{x}} \right)$
$\dfrac{1}{z}\dfrac{{dz}}{{dx}} = \left( {\log x + 1} \right)$
$\dfrac{{dz}}{{dx}} = z\left( {\log x + 1} \right)$
Now substitute the value of $z$, we get
$\dfrac{d}{{dx}}\left( {{x^x}} \right) = {x^x}\left( {\log x + 1} \right)$
Now substitute this value in equation $\left( i \right)$, we get
$\dfrac{{dy}}{{dx}} = \dfrac{{ - 2}}{{1 + {{\left( {{x^x}} \right)}^2}}} \cdot {x^x}\left( {\log x + 1} \right)$
$f\left( x \right) = \dfrac{{ - 2}}{{1 + {{\left( {{x^x}} \right)}^2}}} \cdot {x^x}\left( {\log x + 1} \right)$
Now, by substituting $x = 1$ in the above equation, we get
$f\left( 1 \right) = \dfrac{{ - 2}}{{1 + {{\left( {{1^1}} \right)}^2}}} \cdot {1^1}\left( {\log 1 + 1} \right)$
$f\left( 1 \right) = \dfrac{{ - 2}}{{1 + 1}}.1\left( {0 + 1} \right)\left( {\because \log 1 = 0} \right)$
After simplifying, we get
Therefore, the value of $f\left( 1 \right) = - 1$
Option ‘A’ is correct
Note: Whenever we come across such problems always remember the concept of derivative which is the rate of change of function u with regard to function v. Here, when substituting $z = x^x$ remember that using logarithmic differentiation, we get $log z = x log x$ which is the turning point of the problem.
Formula Used:
1. $\tan \left( {2\theta } \right) = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}$
2. ${\tan^{ - 1}}(x) \cdot \tan \left( x \right) = 1$
3. ${\cot^{ - 1}}\left( x \right) = - \dfrac{1}{{1 + {x^2}}}$
4. $\log {x^x} = x\log x$
5. $\log 1 = 0$
Complete step by step solution:
We are given that $f\left( x \right) = {\cot^{ - 1}}\left( {\dfrac{{{x^x} - {x^{ - x}}}}{2}} \right)$
Now we solve the given equation in simplified form, and we get
$f\left( x \right) = {\cot^{ - 1}}\left( {\dfrac{{\left( {{x^x} - \dfrac{1}{{{x^x}}}} \right)}}{2}} \right)$
$f\left( x \right) = {\cot^{ - 1}}\left( {\dfrac{{\left( {\dfrac{{{{\left( {{x^x}} \right)}^2} - 1}}{{{x^x}}}} \right)}}{2}} \right)$
$f\left( x \right) = {\cot^{ - 1}}\left( {\dfrac{{{{\left( {{x^x}} \right)}^2} - 1}}{{2{x^x}}}} \right)$
Now we know the condition that if ${x^x}$ is greater than zero then ${\cot^{ - 1}}$ changes to ${\tan^{ - 1}}$
So,
$f\left( x \right) = {\tan^{ - 1}}\left( {\dfrac{{2{x^x}}}{{1 - {{\left( {{x^x}} \right)}^2}}}} \right)$
Now we assume that ${x^x} = \tan \theta $ and $f\left( x \right) = y$
After substituting the assumed values, we get
$y = {\tan^{ - 1}}\left( {\dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}} \right)$
Now we know that $\tan \left( {2\theta } \right) = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}$
Thus, the value of $y$ becomes
$y = {\tan^{ - 1}}.\tan \left( {2\theta } \right)$
Now, by using the formula ${\tan^{ - 1}}(x) \cdot \tan \left( x \right) = 1$, we get
$y = 2\theta $
Or
$y = 2{\tan^{ - 1}}{x^x}$
Now when we differentiate with respect to x, we get
$\dfrac{{dy}}{{dx}} = \dfrac{2}{{1 + {{\left( {{x^x}} \right)}^2}}} \cdot \dfrac{d}{{dx}}\left( {{x^x}} \right)...\left( i \right)$
Now, again assuming $z = {x^x}$ and taking its differentiation, we get
$z = {x^x}$
Taking the log on both sides, we get
$\log z = \log \left( {{x^x}} \right)$
$\log z = x\log x$
Differentiate with respect to x we get
$\dfrac{1}{z}\dfrac{{dz}}{{dx}} = \left( {\log x + x \cdot \dfrac{1}{x}} \right)$
$\dfrac{1}{z}\dfrac{{dz}}{{dx}} = \left( {\log x + 1} \right)$
$\dfrac{{dz}}{{dx}} = z\left( {\log x + 1} \right)$
Now substitute the value of $z$, we get
$\dfrac{d}{{dx}}\left( {{x^x}} \right) = {x^x}\left( {\log x + 1} \right)$
Now substitute this value in equation $\left( i \right)$, we get
$\dfrac{{dy}}{{dx}} = \dfrac{{ - 2}}{{1 + {{\left( {{x^x}} \right)}^2}}} \cdot {x^x}\left( {\log x + 1} \right)$
$f\left( x \right) = \dfrac{{ - 2}}{{1 + {{\left( {{x^x}} \right)}^2}}} \cdot {x^x}\left( {\log x + 1} \right)$
Now, by substituting $x = 1$ in the above equation, we get
$f\left( 1 \right) = \dfrac{{ - 2}}{{1 + {{\left( {{1^1}} \right)}^2}}} \cdot {1^1}\left( {\log 1 + 1} \right)$
$f\left( 1 \right) = \dfrac{{ - 2}}{{1 + 1}}.1\left( {0 + 1} \right)\left( {\because \log 1 = 0} \right)$
After simplifying, we get
Therefore, the value of $f\left( 1 \right) = - 1$
Option ‘A’ is correct
Note: Whenever we come across such problems always remember the concept of derivative which is the rate of change of function u with regard to function v. Here, when substituting $z = x^x$ remember that using logarithmic differentiation, we get $log z = x log x$ which is the turning point of the problem.
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

