
If \[f:\left[ {1,\infty } \right) \to \left[ {2,\infty } \right)\] is given by \[f\left( x \right) = x + \dfrac{1}{x}\] then find \[{f^{ - 1}}\left( x \right)\].
A. \[\dfrac{{x + \sqrt {{x^2} - 4} }}{2}\]
B. \[\dfrac{x}{{1 + {x^2}}}\]
C. \[\dfrac{{x - \sqrt {{x^2} - 4} }}{2}\]
D. \[1 + \sqrt {{x^2} - 4} \]
Answer
218.4k+ views
Hint: The inverse function will return the initial value wherein the output of a function was given. In this question, need to find the inverse of a function \[f\left( x \right)\] . . After simplification, based on the given range, we can find \[{f^{ - 1}}\left( x \right)\]. ]
Complete step-by-step answer: Let \[y = f\left( x \right)\]
Thus, we get
\[
y = x + \dfrac{1}{x} \\
\Rightarrow xy = {x^2} + 1 \\
\Rightarrow {x^2} - xy + 1 = 0 \\
\]
Let us factorize the above quadratic equation \[{x^2} - xy + 1 = 0\]
It is in the form of \[a{x^2} + bx + c = 0\]
Thus, by comparing the above equation with \[{x^2} - xy + 1 = 0\], we get \[a = 1;b = - y;c = 1\]
So, \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
By putting the values of \[a = 1;b = - y;c = 1\] in the above equation, we get
Hence, \[x = \dfrac{{ - \left( { - y} \right) \pm \sqrt {{{\left( { - y} \right)}^2} - 4\left( 1 \right)\left( 1 \right)} }}{{2\left( 1 \right)}}\]
\[x = \dfrac{{y \pm \sqrt {{{\left( y \right)}^2} - 4} }}{2}\]
Now, we can have \[{f^{ - 1}}\left( y \right) = \dfrac{{y \pm \sqrt {{{\left( y \right)}^2} - 4} }}{2}\]
\[{f^{ - 1}}\left( x \right) = \dfrac{{x \pm \sqrt {{{\left( x \right)}^2} - 4} }}{2}\]
We know that the range of a inverse function is \[\left[ {1,\infty } \right)\]
If we take \[{f^{ - 1}}\left( x \right) = \dfrac{{x - \sqrt {{{\left( x \right)}^2} - 4} }}{2}\] then \[{f^{ - 1}}\left( x \right) > 1\]
So, this is possible if and only if
\[
{\left( {x - 2} \right)^2} > {x^2} - 4 \\
\Rightarrow {x^2} - 2\left( 2 \right)\left( x \right) + {\left( 2 \right)^2} + > {x^2} - 4 \\
\Rightarrow {x^2} - 4x + 4 + > {x^2} - 4 \\
\Rightarrow - 4x + 8 > 0 \\
\]
By simplifying further, we get
\[
\Rightarrow 8 < 4x \\
\Rightarrow 2 < x \\
\]
Where \[x > 2\]
So, consider \[{f^{ - 1}}\left( x \right) = \dfrac{{x + \sqrt {{{\left( x \right)}^2} - 4} }}{2}\]
Therefore, the correct option is (A).
Note: Many students make mistakes in the calculation part. This is the only way through which we can solve this example in an easy manner.
Complete step-by-step answer: Let \[y = f\left( x \right)\]
Thus, we get
\[
y = x + \dfrac{1}{x} \\
\Rightarrow xy = {x^2} + 1 \\
\Rightarrow {x^2} - xy + 1 = 0 \\
\]
Let us factorize the above quadratic equation \[{x^2} - xy + 1 = 0\]
It is in the form of \[a{x^2} + bx + c = 0\]
Thus, by comparing the above equation with \[{x^2} - xy + 1 = 0\], we get \[a = 1;b = - y;c = 1\]
So, \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
By putting the values of \[a = 1;b = - y;c = 1\] in the above equation, we get
Hence, \[x = \dfrac{{ - \left( { - y} \right) \pm \sqrt {{{\left( { - y} \right)}^2} - 4\left( 1 \right)\left( 1 \right)} }}{{2\left( 1 \right)}}\]
\[x = \dfrac{{y \pm \sqrt {{{\left( y \right)}^2} - 4} }}{2}\]
Now, we can have \[{f^{ - 1}}\left( y \right) = \dfrac{{y \pm \sqrt {{{\left( y \right)}^2} - 4} }}{2}\]
\[{f^{ - 1}}\left( x \right) = \dfrac{{x \pm \sqrt {{{\left( x \right)}^2} - 4} }}{2}\]
We know that the range of a inverse function is \[\left[ {1,\infty } \right)\]
If we take \[{f^{ - 1}}\left( x \right) = \dfrac{{x - \sqrt {{{\left( x \right)}^2} - 4} }}{2}\] then \[{f^{ - 1}}\left( x \right) > 1\]
So, this is possible if and only if
\[
{\left( {x - 2} \right)^2} > {x^2} - 4 \\
\Rightarrow {x^2} - 2\left( 2 \right)\left( x \right) + {\left( 2 \right)^2} + > {x^2} - 4 \\
\Rightarrow {x^2} - 4x + 4 + > {x^2} - 4 \\
\Rightarrow - 4x + 8 > 0 \\
\]
By simplifying further, we get
\[
\Rightarrow 8 < 4x \\
\Rightarrow 2 < x \\
\]
Where \[x > 2\]
So, consider \[{f^{ - 1}}\left( x \right) = \dfrac{{x + \sqrt {{{\left( x \right)}^2} - 4} }}{2}\]
Therefore, the correct option is (A).
Note: Many students make mistakes in the calculation part. This is the only way through which we can solve this example in an easy manner.
Recently Updated Pages
In a game two players A and B take turns in throwing class 12 maths JEE_Main

The number of ways in which 6 men and 5 women can dine class 12 maths JEE_Main

The area of an expanding rectangle is increasing at class 12 maths JEE_Main

If y xxx cdots infty then find dfracdydx A yxy 1 B class 12 maths JEE_Main

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

