
If $e\,$and $e'$ are the eccentricities of the ellipse $5{{x}^{2}}+9{{y}^{2}}=45$ and the hyperbola $5{{x}^{2}}-4{{y}^{2}}=45$ respectively then $ee'=$.
A. $9$
B. $4$
C. $5$
D. $1$
Answer
232.8k+ views
Hint: To solve this question we will first write the given equation of ellipse as the general equation of ellipse $\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$ and then compare each other and find the value of ${{a}^{2}}$ and ${{b}^{2}}$. Then substituting values of ${{a}^{2}}$ and ${{b}^{2}}$ in the formula of eccentricity of ellipse we will find the value of $e\,$.
We will then take the equation of hyperbola and write it in the general equation of hyperbola $\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$ and then compare each other and derive the value of ${{a}^{2}}$ and ${{b}^{2}}$. Substituting values of ${{a}^{2}}$ and ${{b}^{2}}$ in the formula of eccentricity of hyperbola we will find the value of $e'$. We will then multiply the value of $e\,$and $e'$ and find the value of $ee'$.
Formula used: Eccentricity of hyperbola: $e=\sqrt{1+\dfrac{{{b}^{2}}}{{{a}^{2}}}}$.
Eccentricity of ellipse: $e=\sqrt{1-\dfrac{{{b}^{2}}}{{{a}^{2}}}}$.
Complete step by step solution: We are given that $e\,$and $e'$ are the eccentricities of the ellipse $5{{x}^{2}}+9{{y}^{2}}=45$ and hyperbola $5{{x}^{2}}-4{{y}^{2}}=45$ and we have to determine the value of $ee'$.
We know that the general equation of ellipse is $\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$, so we will first write the given equation of ellipse $5{{x}^{2}}+9{{y}^{2}}=45$ in this form.
$5{{x}^{2}}+9{{y}^{2}}=45$
Dividing the equation by $45$ on both sides of the equation.
$\begin{align}
& \dfrac{5{{x}^{2}}}{45}+\dfrac{9{{y}^{2}}}{45}=\dfrac{45}{45} \\
& \dfrac{{{x}^{2}}}{9}+\dfrac{{{y}^{2}}}{5}=1......(i)
\end{align}$
We will now compare the equation (i) with the general equation of the ellipse and find the value of ${{a}^{2}}$ and ${{b}^{2}}$.
$\begin{align}
& \dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=\dfrac{{{x}^{2}}}{9}+\dfrac{{{y}^{2}}}{5} \\
& {{a}^{2}}=9 \\
& {{b}^{2}}=5
\end{align}$
We will now calculate the eccentricity of ellipse $e\,$ with the help of the formula $e=\sqrt{1-\dfrac{{{b}^{2}}}{{{a}^{2}}}}$by substituting the value of ${{a}^{2}}$ and ${{b}^{2}}$.
\[\begin{align}
& e=\sqrt{1-\dfrac{5}{9}} \\
& e=\sqrt{\dfrac{4}{9}} \\
& e=\dfrac{2}{3}
\end{align}\]
Now,
We know that the general equation of hyperbola is $\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$ so we will first write the given equation of hyperbola $5{{x}^{2}}-4{{y}^{2}}=45$ in this form.
$5{{x}^{2}}-4{{y}^{2}}=45$
Dividing the equation by $45$ on both sides of the equation.
$\begin{align}
& \dfrac{5{{x}^{2}}}{45}-\dfrac{4{{y}^{2}}}{45}=\dfrac{45}{45} \\
& \dfrac{{{x}^{2}}}{9}-\dfrac{{{y}^{2}}}{\dfrac{45}{4}}=1......(ii)
\end{align}$
We will now compare the equation (ii) with the general equation of hyperbola and find the value of ${{a}^{2}}$ and ${{b}^{2}}$.
$\begin{align}
& \dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=\dfrac{{{x}^{2}}}{9}-\dfrac{{{y}^{2}}}{\dfrac{45}{4}} \\
& {{a}^{2}}=9 \\
& {{b}^{2}}=\dfrac{45}{4}
\end{align}$
We will now find the eccentricity of hyperbola $e'$ using formula $e=\sqrt{1+\dfrac{{{b}^{2}}}{{{a}^{2}}}}$ by substituting the value of ${{a}^{2}}$ and ${{b}^{2}}$.
$\begin{align}
& e'=\sqrt{1+\dfrac{\dfrac{45}{4}}{9}} \\
& e'=\sqrt{1+\dfrac{45}{36}} \\
& e'=\sqrt{\dfrac{81}{36}} \\
& e'=\dfrac{9}{6} \\
& e'=\dfrac{3}{2} \\
\end{align}$
We will now calculate the value of $ee'$.
$\begin{align}
& ee'=\dfrac{2}{3}\times \dfrac{3}{2} \\
& ee'=1 \\
\end{align}$
The value of $ee'$ is $ee'=1$ where $e\,$and $e'$ are the eccentricities of the ellipse $5{{x}^{2}}+9{{y}^{2}}=45$ and the hyperbola $5{{x}^{2}}-4{{y}^{2}}=45$. Hence the correct option is (D).
Note: The eccentricity of an ellipse should be always less than one while eccentricity of hyperbola is always greater than one.
We will then take the equation of hyperbola and write it in the general equation of hyperbola $\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$ and then compare each other and derive the value of ${{a}^{2}}$ and ${{b}^{2}}$. Substituting values of ${{a}^{2}}$ and ${{b}^{2}}$ in the formula of eccentricity of hyperbola we will find the value of $e'$. We will then multiply the value of $e\,$and $e'$ and find the value of $ee'$.
Formula used: Eccentricity of hyperbola: $e=\sqrt{1+\dfrac{{{b}^{2}}}{{{a}^{2}}}}$.
Eccentricity of ellipse: $e=\sqrt{1-\dfrac{{{b}^{2}}}{{{a}^{2}}}}$.
Complete step by step solution: We are given that $e\,$and $e'$ are the eccentricities of the ellipse $5{{x}^{2}}+9{{y}^{2}}=45$ and hyperbola $5{{x}^{2}}-4{{y}^{2}}=45$ and we have to determine the value of $ee'$.
We know that the general equation of ellipse is $\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$, so we will first write the given equation of ellipse $5{{x}^{2}}+9{{y}^{2}}=45$ in this form.
$5{{x}^{2}}+9{{y}^{2}}=45$
Dividing the equation by $45$ on both sides of the equation.
$\begin{align}
& \dfrac{5{{x}^{2}}}{45}+\dfrac{9{{y}^{2}}}{45}=\dfrac{45}{45} \\
& \dfrac{{{x}^{2}}}{9}+\dfrac{{{y}^{2}}}{5}=1......(i)
\end{align}$
We will now compare the equation (i) with the general equation of the ellipse and find the value of ${{a}^{2}}$ and ${{b}^{2}}$.
$\begin{align}
& \dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=\dfrac{{{x}^{2}}}{9}+\dfrac{{{y}^{2}}}{5} \\
& {{a}^{2}}=9 \\
& {{b}^{2}}=5
\end{align}$
We will now calculate the eccentricity of ellipse $e\,$ with the help of the formula $e=\sqrt{1-\dfrac{{{b}^{2}}}{{{a}^{2}}}}$by substituting the value of ${{a}^{2}}$ and ${{b}^{2}}$.
\[\begin{align}
& e=\sqrt{1-\dfrac{5}{9}} \\
& e=\sqrt{\dfrac{4}{9}} \\
& e=\dfrac{2}{3}
\end{align}\]
Now,
We know that the general equation of hyperbola is $\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$ so we will first write the given equation of hyperbola $5{{x}^{2}}-4{{y}^{2}}=45$ in this form.
$5{{x}^{2}}-4{{y}^{2}}=45$
Dividing the equation by $45$ on both sides of the equation.
$\begin{align}
& \dfrac{5{{x}^{2}}}{45}-\dfrac{4{{y}^{2}}}{45}=\dfrac{45}{45} \\
& \dfrac{{{x}^{2}}}{9}-\dfrac{{{y}^{2}}}{\dfrac{45}{4}}=1......(ii)
\end{align}$
We will now compare the equation (ii) with the general equation of hyperbola and find the value of ${{a}^{2}}$ and ${{b}^{2}}$.
$\begin{align}
& \dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=\dfrac{{{x}^{2}}}{9}-\dfrac{{{y}^{2}}}{\dfrac{45}{4}} \\
& {{a}^{2}}=9 \\
& {{b}^{2}}=\dfrac{45}{4}
\end{align}$
We will now find the eccentricity of hyperbola $e'$ using formula $e=\sqrt{1+\dfrac{{{b}^{2}}}{{{a}^{2}}}}$ by substituting the value of ${{a}^{2}}$ and ${{b}^{2}}$.
$\begin{align}
& e'=\sqrt{1+\dfrac{\dfrac{45}{4}}{9}} \\
& e'=\sqrt{1+\dfrac{45}{36}} \\
& e'=\sqrt{\dfrac{81}{36}} \\
& e'=\dfrac{9}{6} \\
& e'=\dfrac{3}{2} \\
\end{align}$
We will now calculate the value of $ee'$.
$\begin{align}
& ee'=\dfrac{2}{3}\times \dfrac{3}{2} \\
& ee'=1 \\
\end{align}$
The value of $ee'$ is $ee'=1$ where $e\,$and $e'$ are the eccentricities of the ellipse $5{{x}^{2}}+9{{y}^{2}}=45$ and the hyperbola $5{{x}^{2}}-4{{y}^{2}}=45$. Hence the correct option is (D).
Note: The eccentricity of an ellipse should be always less than one while eccentricity of hyperbola is always greater than one.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

