
If $e\,$and $e'$ are the eccentricities of the ellipse $5{{x}^{2}}+9{{y}^{2}}=45$ and the hyperbola $5{{x}^{2}}-4{{y}^{2}}=45$ respectively then $ee'=$.
A. $9$
B. $4$
C. $5$
D. $1$
Answer
218.7k+ views
Hint: To solve this question we will first write the given equation of ellipse as the general equation of ellipse $\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$ and then compare each other and find the value of ${{a}^{2}}$ and ${{b}^{2}}$. Then substituting values of ${{a}^{2}}$ and ${{b}^{2}}$ in the formula of eccentricity of ellipse we will find the value of $e\,$.
We will then take the equation of hyperbola and write it in the general equation of hyperbola $\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$ and then compare each other and derive the value of ${{a}^{2}}$ and ${{b}^{2}}$. Substituting values of ${{a}^{2}}$ and ${{b}^{2}}$ in the formula of eccentricity of hyperbola we will find the value of $e'$. We will then multiply the value of $e\,$and $e'$ and find the value of $ee'$.
Formula used: Eccentricity of hyperbola: $e=\sqrt{1+\dfrac{{{b}^{2}}}{{{a}^{2}}}}$.
Eccentricity of ellipse: $e=\sqrt{1-\dfrac{{{b}^{2}}}{{{a}^{2}}}}$.
Complete step by step solution: We are given that $e\,$and $e'$ are the eccentricities of the ellipse $5{{x}^{2}}+9{{y}^{2}}=45$ and hyperbola $5{{x}^{2}}-4{{y}^{2}}=45$ and we have to determine the value of $ee'$.
We know that the general equation of ellipse is $\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$, so we will first write the given equation of ellipse $5{{x}^{2}}+9{{y}^{2}}=45$ in this form.
$5{{x}^{2}}+9{{y}^{2}}=45$
Dividing the equation by $45$ on both sides of the equation.
$\begin{align}
& \dfrac{5{{x}^{2}}}{45}+\dfrac{9{{y}^{2}}}{45}=\dfrac{45}{45} \\
& \dfrac{{{x}^{2}}}{9}+\dfrac{{{y}^{2}}}{5}=1......(i)
\end{align}$
We will now compare the equation (i) with the general equation of the ellipse and find the value of ${{a}^{2}}$ and ${{b}^{2}}$.
$\begin{align}
& \dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=\dfrac{{{x}^{2}}}{9}+\dfrac{{{y}^{2}}}{5} \\
& {{a}^{2}}=9 \\
& {{b}^{2}}=5
\end{align}$
We will now calculate the eccentricity of ellipse $e\,$ with the help of the formula $e=\sqrt{1-\dfrac{{{b}^{2}}}{{{a}^{2}}}}$by substituting the value of ${{a}^{2}}$ and ${{b}^{2}}$.
\[\begin{align}
& e=\sqrt{1-\dfrac{5}{9}} \\
& e=\sqrt{\dfrac{4}{9}} \\
& e=\dfrac{2}{3}
\end{align}\]
Now,
We know that the general equation of hyperbola is $\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$ so we will first write the given equation of hyperbola $5{{x}^{2}}-4{{y}^{2}}=45$ in this form.
$5{{x}^{2}}-4{{y}^{2}}=45$
Dividing the equation by $45$ on both sides of the equation.
$\begin{align}
& \dfrac{5{{x}^{2}}}{45}-\dfrac{4{{y}^{2}}}{45}=\dfrac{45}{45} \\
& \dfrac{{{x}^{2}}}{9}-\dfrac{{{y}^{2}}}{\dfrac{45}{4}}=1......(ii)
\end{align}$
We will now compare the equation (ii) with the general equation of hyperbola and find the value of ${{a}^{2}}$ and ${{b}^{2}}$.
$\begin{align}
& \dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=\dfrac{{{x}^{2}}}{9}-\dfrac{{{y}^{2}}}{\dfrac{45}{4}} \\
& {{a}^{2}}=9 \\
& {{b}^{2}}=\dfrac{45}{4}
\end{align}$
We will now find the eccentricity of hyperbola $e'$ using formula $e=\sqrt{1+\dfrac{{{b}^{2}}}{{{a}^{2}}}}$ by substituting the value of ${{a}^{2}}$ and ${{b}^{2}}$.
$\begin{align}
& e'=\sqrt{1+\dfrac{\dfrac{45}{4}}{9}} \\
& e'=\sqrt{1+\dfrac{45}{36}} \\
& e'=\sqrt{\dfrac{81}{36}} \\
& e'=\dfrac{9}{6} \\
& e'=\dfrac{3}{2} \\
\end{align}$
We will now calculate the value of $ee'$.
$\begin{align}
& ee'=\dfrac{2}{3}\times \dfrac{3}{2} \\
& ee'=1 \\
\end{align}$
The value of $ee'$ is $ee'=1$ where $e\,$and $e'$ are the eccentricities of the ellipse $5{{x}^{2}}+9{{y}^{2}}=45$ and the hyperbola $5{{x}^{2}}-4{{y}^{2}}=45$. Hence the correct option is (D).
Note: The eccentricity of an ellipse should be always less than one while eccentricity of hyperbola is always greater than one.
We will then take the equation of hyperbola and write it in the general equation of hyperbola $\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$ and then compare each other and derive the value of ${{a}^{2}}$ and ${{b}^{2}}$. Substituting values of ${{a}^{2}}$ and ${{b}^{2}}$ in the formula of eccentricity of hyperbola we will find the value of $e'$. We will then multiply the value of $e\,$and $e'$ and find the value of $ee'$.
Formula used: Eccentricity of hyperbola: $e=\sqrt{1+\dfrac{{{b}^{2}}}{{{a}^{2}}}}$.
Eccentricity of ellipse: $e=\sqrt{1-\dfrac{{{b}^{2}}}{{{a}^{2}}}}$.
Complete step by step solution: We are given that $e\,$and $e'$ are the eccentricities of the ellipse $5{{x}^{2}}+9{{y}^{2}}=45$ and hyperbola $5{{x}^{2}}-4{{y}^{2}}=45$ and we have to determine the value of $ee'$.
We know that the general equation of ellipse is $\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$, so we will first write the given equation of ellipse $5{{x}^{2}}+9{{y}^{2}}=45$ in this form.
$5{{x}^{2}}+9{{y}^{2}}=45$
Dividing the equation by $45$ on both sides of the equation.
$\begin{align}
& \dfrac{5{{x}^{2}}}{45}+\dfrac{9{{y}^{2}}}{45}=\dfrac{45}{45} \\
& \dfrac{{{x}^{2}}}{9}+\dfrac{{{y}^{2}}}{5}=1......(i)
\end{align}$
We will now compare the equation (i) with the general equation of the ellipse and find the value of ${{a}^{2}}$ and ${{b}^{2}}$.
$\begin{align}
& \dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=\dfrac{{{x}^{2}}}{9}+\dfrac{{{y}^{2}}}{5} \\
& {{a}^{2}}=9 \\
& {{b}^{2}}=5
\end{align}$
We will now calculate the eccentricity of ellipse $e\,$ with the help of the formula $e=\sqrt{1-\dfrac{{{b}^{2}}}{{{a}^{2}}}}$by substituting the value of ${{a}^{2}}$ and ${{b}^{2}}$.
\[\begin{align}
& e=\sqrt{1-\dfrac{5}{9}} \\
& e=\sqrt{\dfrac{4}{9}} \\
& e=\dfrac{2}{3}
\end{align}\]
Now,
We know that the general equation of hyperbola is $\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$ so we will first write the given equation of hyperbola $5{{x}^{2}}-4{{y}^{2}}=45$ in this form.
$5{{x}^{2}}-4{{y}^{2}}=45$
Dividing the equation by $45$ on both sides of the equation.
$\begin{align}
& \dfrac{5{{x}^{2}}}{45}-\dfrac{4{{y}^{2}}}{45}=\dfrac{45}{45} \\
& \dfrac{{{x}^{2}}}{9}-\dfrac{{{y}^{2}}}{\dfrac{45}{4}}=1......(ii)
\end{align}$
We will now compare the equation (ii) with the general equation of hyperbola and find the value of ${{a}^{2}}$ and ${{b}^{2}}$.
$\begin{align}
& \dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=\dfrac{{{x}^{2}}}{9}-\dfrac{{{y}^{2}}}{\dfrac{45}{4}} \\
& {{a}^{2}}=9 \\
& {{b}^{2}}=\dfrac{45}{4}
\end{align}$
We will now find the eccentricity of hyperbola $e'$ using formula $e=\sqrt{1+\dfrac{{{b}^{2}}}{{{a}^{2}}}}$ by substituting the value of ${{a}^{2}}$ and ${{b}^{2}}$.
$\begin{align}
& e'=\sqrt{1+\dfrac{\dfrac{45}{4}}{9}} \\
& e'=\sqrt{1+\dfrac{45}{36}} \\
& e'=\sqrt{\dfrac{81}{36}} \\
& e'=\dfrac{9}{6} \\
& e'=\dfrac{3}{2} \\
\end{align}$
We will now calculate the value of $ee'$.
$\begin{align}
& ee'=\dfrac{2}{3}\times \dfrac{3}{2} \\
& ee'=1 \\
\end{align}$
The value of $ee'$ is $ee'=1$ where $e\,$and $e'$ are the eccentricities of the ellipse $5{{x}^{2}}+9{{y}^{2}}=45$ and the hyperbola $5{{x}^{2}}-4{{y}^{2}}=45$. Hence the correct option is (D).
Note: The eccentricity of an ellipse should be always less than one while eccentricity of hyperbola is always greater than one.
Recently Updated Pages
In a game two players A and B take turns in throwing class 12 maths JEE_Main

The number of ways in which 6 men and 5 women can dine class 12 maths JEE_Main

The area of an expanding rectangle is increasing at class 12 maths JEE_Main

If y xxx cdots infty then find dfracdydx A yxy 1 B class 12 maths JEE_Main

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

