
If $\cos x = \left( {\dfrac{1}{{\sqrt {\left( {1 + {t^2}} \right)} }}} \right)$, and $\sin y = \left( {\dfrac{t}{{\sqrt {\left( {1 + {t^2}} \right)} }}} \right)$. Then what is the value of $\dfrac{{dy}}{{dx}}$?
A. 1
B. 0
C. $ - 1$
D. None of these
Answer
162.6k+ views
Hint: Substitute value of $t =\tan\theta $ and simplify both equations. Then differentiate both equations with respect to $t$. In the end, take the ratio of $\dfrac{{dy}}{{dt}}$ to $\dfrac{{dx}}{{dt}}$ and get the required answer.
Formula Used:
$\cos^{ - 1}\left( {\cos x} \right) = x$
$\sin^{ - 1}\left( {\sin x} \right) = x$
$\dfrac{d}{{dx}}\left( {\tan^{ - 1}x} \right) = \dfrac{1}{{1 + {x^2}}}$
$\dfrac{{dy}}{{dx}} = \dfrac{{\left( {\dfrac{{dy}}{{dt}}} \right)}}{{\left( {\dfrac{{dx}}{{dt}}} \right)}}$
Complete step by step solution:
The given trigonometric equations are $\cos x = \left( {\dfrac{1}{{\sqrt {\left( {1 + {t^2}} \right)} }}} \right)$, and $\sin y = \left( {\dfrac{t}{{\sqrt {\left( {1 + {t^2}} \right)} }}} \right)$.
Let’s simplify both equations.
$\cos x = \left( {\dfrac{1}{{\sqrt {\left( {1 + {t^2}} \right)} }}} \right)$
$ \Rightarrow x = \cos^{ - 1}\left( {\dfrac{1}{{\sqrt {\left( {1 + {t^2}} \right)} }}} \right)$
Substitute $t = \tan\theta $ in the above equation.
$x = \cos^{ - 1}\left( {\dfrac{1}{{\sqrt {\left( {1 + \tan^{2}\theta } \right)} }}} \right)$
$ \Rightarrow x = \cos^{ - 1}\left( {\dfrac{1}{{\sqrt {\sec^{2}\theta } }}} \right)$ [Since $\sec^{2}\theta - 1 = \tan^{2}\theta $]
$ \Rightarrow x = \cos^{ - 1}\left( {\dfrac{1}{{\sec\theta }}} \right)$
$ \Rightarrow x = \cos^{ - 1}\left( {\cos \theta } \right)$ [Since $\dfrac{1}{{\sec x}} = \cos x$]
$ \Rightarrow x = \theta $ [Since $\cos^{ - 1}\left( {\cos x} \right) = x$]
Re-substitute the value of $\theta $ in the above equation.
$x = \tan^{ - 1}t$
Now differentiate the above equation with respect to $t$.
$\dfrac{{dx}}{{dt}} = \dfrac{d}{{dt}}\left( {\tan^{ - 1}t} \right)$
Apply the formula $\dfrac{d}{{dx}}\left( {\tan^{ - 1}x} \right) = \dfrac{1}{{1 + {x^2}}}$.
$\dfrac{{dx}}{{dt}} = \dfrac{1}{{1 + {t^2}}}$ $.....\left( 1 \right)$
Now simplify the given equation $\sin y = \left( {\dfrac{t}{{\sqrt {\left( {1 + {t^2}} \right)} }}} \right)$.
$ \Rightarrow y = \sin^{ - 1}\left( {\dfrac{t}{{\sqrt {\left( {1 + {t^2}} \right)} }}} \right)$
Substitute $t = \tan\theta $ in the above equation.
$y = \sin^{ - 1}\left( {\dfrac{{\tan\theta }}{{\sqrt {\left( {1 + \tan^{2}\theta } \right)} }}} \right)$
$ \Rightarrow y = \sin^{ - 1}\left( {\dfrac{{\tan \theta }}{{\sqrt {\sec^{2}\theta } }}} \right)$ [Since $\sec^{2}\theta - 1 = \tan^{2}\theta $]
$ \Rightarrow y = \sin^{ - 1}\left( {\dfrac{{\tan \theta }}{{\sec \theta }}} \right)$
$ \Rightarrow y = \sin^{ - 1}\left( {\dfrac{{\dfrac{{\sin \theta }}{{\cos \theta }}}}{{\dfrac{1}{{\cos \theta }}}}} \right)$ [Since $\dfrac{1}{{\sec x}} = \cos x$ and $\dfrac{{\sin x}}{{\cos x}} = \tan x$]
$ \Rightarrow y = \sin^{ - 1}\left( {\sin \theta } \right)$
$ \Rightarrow y = \theta $ [Since $\sin^{ - 1}\left( {\sin x} \right) = x$]
Re-substitute the value of $\theta $ in the above equation.
$y = \tan^{ - 1}t$
Now differentiate the above equation with respect to $t$.
$\dfrac{{dy}}{{dt}} = \dfrac{d}{{dt}}\left( {\tan^{ - 1}t} \right)$
Apply the formula $\dfrac{d}{{dx}}\left( {\tan^{ - 1}x} \right) = \dfrac{1}{{1 + {x^2}}}$.
$\dfrac{{dy}}{{dt}} = \dfrac{1}{{1 + {t^2}}}$ $.....\left( 2 \right)$
Now apply the formula $\dfrac{{dy}}{{dx}} = \dfrac{{\left( {\dfrac{{dy}}{{dt}}} \right)}}{{\left( {\dfrac{{dx}}{{dt}}} \right)}}$.
Substitute the equations $\left( 1 \right)$ and $\left( 2 \right)$ in the above formula.
$\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{1}{{1 + {t^2}}}}}{{\dfrac{1}{{1 + {t^2}}}}}$
$ \Rightarrow \dfrac{{dy}}{{dx}} = 1$
Option ‘A’ is correct
Note: Students often make the mistake of applying the formula to calculate $\dfrac{{dy}}{{dx}}$. Sometimes they used $\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{dt}} \cdot \dfrac{{dx}}{{dt}}$ which is an incorrect formula. The correct formula is $\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{dt}}}}{{\dfrac{{dx}}{{dt}}}}$.
Formula Used:
$\cos^{ - 1}\left( {\cos x} \right) = x$
$\sin^{ - 1}\left( {\sin x} \right) = x$
$\dfrac{d}{{dx}}\left( {\tan^{ - 1}x} \right) = \dfrac{1}{{1 + {x^2}}}$
$\dfrac{{dy}}{{dx}} = \dfrac{{\left( {\dfrac{{dy}}{{dt}}} \right)}}{{\left( {\dfrac{{dx}}{{dt}}} \right)}}$
Complete step by step solution:
The given trigonometric equations are $\cos x = \left( {\dfrac{1}{{\sqrt {\left( {1 + {t^2}} \right)} }}} \right)$, and $\sin y = \left( {\dfrac{t}{{\sqrt {\left( {1 + {t^2}} \right)} }}} \right)$.
Let’s simplify both equations.
$\cos x = \left( {\dfrac{1}{{\sqrt {\left( {1 + {t^2}} \right)} }}} \right)$
$ \Rightarrow x = \cos^{ - 1}\left( {\dfrac{1}{{\sqrt {\left( {1 + {t^2}} \right)} }}} \right)$
Substitute $t = \tan\theta $ in the above equation.
$x = \cos^{ - 1}\left( {\dfrac{1}{{\sqrt {\left( {1 + \tan^{2}\theta } \right)} }}} \right)$
$ \Rightarrow x = \cos^{ - 1}\left( {\dfrac{1}{{\sqrt {\sec^{2}\theta } }}} \right)$ [Since $\sec^{2}\theta - 1 = \tan^{2}\theta $]
$ \Rightarrow x = \cos^{ - 1}\left( {\dfrac{1}{{\sec\theta }}} \right)$
$ \Rightarrow x = \cos^{ - 1}\left( {\cos \theta } \right)$ [Since $\dfrac{1}{{\sec x}} = \cos x$]
$ \Rightarrow x = \theta $ [Since $\cos^{ - 1}\left( {\cos x} \right) = x$]
Re-substitute the value of $\theta $ in the above equation.
$x = \tan^{ - 1}t$
Now differentiate the above equation with respect to $t$.
$\dfrac{{dx}}{{dt}} = \dfrac{d}{{dt}}\left( {\tan^{ - 1}t} \right)$
Apply the formula $\dfrac{d}{{dx}}\left( {\tan^{ - 1}x} \right) = \dfrac{1}{{1 + {x^2}}}$.
$\dfrac{{dx}}{{dt}} = \dfrac{1}{{1 + {t^2}}}$ $.....\left( 1 \right)$
Now simplify the given equation $\sin y = \left( {\dfrac{t}{{\sqrt {\left( {1 + {t^2}} \right)} }}} \right)$.
$ \Rightarrow y = \sin^{ - 1}\left( {\dfrac{t}{{\sqrt {\left( {1 + {t^2}} \right)} }}} \right)$
Substitute $t = \tan\theta $ in the above equation.
$y = \sin^{ - 1}\left( {\dfrac{{\tan\theta }}{{\sqrt {\left( {1 + \tan^{2}\theta } \right)} }}} \right)$
$ \Rightarrow y = \sin^{ - 1}\left( {\dfrac{{\tan \theta }}{{\sqrt {\sec^{2}\theta } }}} \right)$ [Since $\sec^{2}\theta - 1 = \tan^{2}\theta $]
$ \Rightarrow y = \sin^{ - 1}\left( {\dfrac{{\tan \theta }}{{\sec \theta }}} \right)$
$ \Rightarrow y = \sin^{ - 1}\left( {\dfrac{{\dfrac{{\sin \theta }}{{\cos \theta }}}}{{\dfrac{1}{{\cos \theta }}}}} \right)$ [Since $\dfrac{1}{{\sec x}} = \cos x$ and $\dfrac{{\sin x}}{{\cos x}} = \tan x$]
$ \Rightarrow y = \sin^{ - 1}\left( {\sin \theta } \right)$
$ \Rightarrow y = \theta $ [Since $\sin^{ - 1}\left( {\sin x} \right) = x$]
Re-substitute the value of $\theta $ in the above equation.
$y = \tan^{ - 1}t$
Now differentiate the above equation with respect to $t$.
$\dfrac{{dy}}{{dt}} = \dfrac{d}{{dt}}\left( {\tan^{ - 1}t} \right)$
Apply the formula $\dfrac{d}{{dx}}\left( {\tan^{ - 1}x} \right) = \dfrac{1}{{1 + {x^2}}}$.
$\dfrac{{dy}}{{dt}} = \dfrac{1}{{1 + {t^2}}}$ $.....\left( 2 \right)$
Now apply the formula $\dfrac{{dy}}{{dx}} = \dfrac{{\left( {\dfrac{{dy}}{{dt}}} \right)}}{{\left( {\dfrac{{dx}}{{dt}}} \right)}}$.
Substitute the equations $\left( 1 \right)$ and $\left( 2 \right)$ in the above formula.
$\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{1}{{1 + {t^2}}}}}{{\dfrac{1}{{1 + {t^2}}}}}$
$ \Rightarrow \dfrac{{dy}}{{dx}} = 1$
Option ‘A’ is correct
Note: Students often make the mistake of applying the formula to calculate $\dfrac{{dy}}{{dx}}$. Sometimes they used $\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{dt}} \cdot \dfrac{{dx}}{{dt}}$ which is an incorrect formula. The correct formula is $\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{dt}}}}{{\dfrac{{dx}}{{dt}}}}$.
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

1 Billion in Rupees

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE
