
If $\cos x = \left( {\dfrac{1}{{\sqrt {\left( {1 + {t^2}} \right)} }}} \right)$, and $\sin y = \left( {\dfrac{t}{{\sqrt {\left( {1 + {t^2}} \right)} }}} \right)$. Then what is the value of $\dfrac{{dy}}{{dx}}$?
A. 1
B. 0
C. $ - 1$
D. None of these
Answer
232.8k+ views
Hint: Substitute value of $t =\tan\theta $ and simplify both equations. Then differentiate both equations with respect to $t$. In the end, take the ratio of $\dfrac{{dy}}{{dt}}$ to $\dfrac{{dx}}{{dt}}$ and get the required answer.
Formula Used:
$\cos^{ - 1}\left( {\cos x} \right) = x$
$\sin^{ - 1}\left( {\sin x} \right) = x$
$\dfrac{d}{{dx}}\left( {\tan^{ - 1}x} \right) = \dfrac{1}{{1 + {x^2}}}$
$\dfrac{{dy}}{{dx}} = \dfrac{{\left( {\dfrac{{dy}}{{dt}}} \right)}}{{\left( {\dfrac{{dx}}{{dt}}} \right)}}$
Complete step by step solution:
The given trigonometric equations are $\cos x = \left( {\dfrac{1}{{\sqrt {\left( {1 + {t^2}} \right)} }}} \right)$, and $\sin y = \left( {\dfrac{t}{{\sqrt {\left( {1 + {t^2}} \right)} }}} \right)$.
Let’s simplify both equations.
$\cos x = \left( {\dfrac{1}{{\sqrt {\left( {1 + {t^2}} \right)} }}} \right)$
$ \Rightarrow x = \cos^{ - 1}\left( {\dfrac{1}{{\sqrt {\left( {1 + {t^2}} \right)} }}} \right)$
Substitute $t = \tan\theta $ in the above equation.
$x = \cos^{ - 1}\left( {\dfrac{1}{{\sqrt {\left( {1 + \tan^{2}\theta } \right)} }}} \right)$
$ \Rightarrow x = \cos^{ - 1}\left( {\dfrac{1}{{\sqrt {\sec^{2}\theta } }}} \right)$ [Since $\sec^{2}\theta - 1 = \tan^{2}\theta $]
$ \Rightarrow x = \cos^{ - 1}\left( {\dfrac{1}{{\sec\theta }}} \right)$
$ \Rightarrow x = \cos^{ - 1}\left( {\cos \theta } \right)$ [Since $\dfrac{1}{{\sec x}} = \cos x$]
$ \Rightarrow x = \theta $ [Since $\cos^{ - 1}\left( {\cos x} \right) = x$]
Re-substitute the value of $\theta $ in the above equation.
$x = \tan^{ - 1}t$
Now differentiate the above equation with respect to $t$.
$\dfrac{{dx}}{{dt}} = \dfrac{d}{{dt}}\left( {\tan^{ - 1}t} \right)$
Apply the formula $\dfrac{d}{{dx}}\left( {\tan^{ - 1}x} \right) = \dfrac{1}{{1 + {x^2}}}$.
$\dfrac{{dx}}{{dt}} = \dfrac{1}{{1 + {t^2}}}$ $.....\left( 1 \right)$
Now simplify the given equation $\sin y = \left( {\dfrac{t}{{\sqrt {\left( {1 + {t^2}} \right)} }}} \right)$.
$ \Rightarrow y = \sin^{ - 1}\left( {\dfrac{t}{{\sqrt {\left( {1 + {t^2}} \right)} }}} \right)$
Substitute $t = \tan\theta $ in the above equation.
$y = \sin^{ - 1}\left( {\dfrac{{\tan\theta }}{{\sqrt {\left( {1 + \tan^{2}\theta } \right)} }}} \right)$
$ \Rightarrow y = \sin^{ - 1}\left( {\dfrac{{\tan \theta }}{{\sqrt {\sec^{2}\theta } }}} \right)$ [Since $\sec^{2}\theta - 1 = \tan^{2}\theta $]
$ \Rightarrow y = \sin^{ - 1}\left( {\dfrac{{\tan \theta }}{{\sec \theta }}} \right)$
$ \Rightarrow y = \sin^{ - 1}\left( {\dfrac{{\dfrac{{\sin \theta }}{{\cos \theta }}}}{{\dfrac{1}{{\cos \theta }}}}} \right)$ [Since $\dfrac{1}{{\sec x}} = \cos x$ and $\dfrac{{\sin x}}{{\cos x}} = \tan x$]
$ \Rightarrow y = \sin^{ - 1}\left( {\sin \theta } \right)$
$ \Rightarrow y = \theta $ [Since $\sin^{ - 1}\left( {\sin x} \right) = x$]
Re-substitute the value of $\theta $ in the above equation.
$y = \tan^{ - 1}t$
Now differentiate the above equation with respect to $t$.
$\dfrac{{dy}}{{dt}} = \dfrac{d}{{dt}}\left( {\tan^{ - 1}t} \right)$
Apply the formula $\dfrac{d}{{dx}}\left( {\tan^{ - 1}x} \right) = \dfrac{1}{{1 + {x^2}}}$.
$\dfrac{{dy}}{{dt}} = \dfrac{1}{{1 + {t^2}}}$ $.....\left( 2 \right)$
Now apply the formula $\dfrac{{dy}}{{dx}} = \dfrac{{\left( {\dfrac{{dy}}{{dt}}} \right)}}{{\left( {\dfrac{{dx}}{{dt}}} \right)}}$.
Substitute the equations $\left( 1 \right)$ and $\left( 2 \right)$ in the above formula.
$\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{1}{{1 + {t^2}}}}}{{\dfrac{1}{{1 + {t^2}}}}}$
$ \Rightarrow \dfrac{{dy}}{{dx}} = 1$
Option ‘A’ is correct
Note: Students often make the mistake of applying the formula to calculate $\dfrac{{dy}}{{dx}}$. Sometimes they used $\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{dt}} \cdot \dfrac{{dx}}{{dt}}$ which is an incorrect formula. The correct formula is $\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{dt}}}}{{\dfrac{{dx}}{{dt}}}}$.
Formula Used:
$\cos^{ - 1}\left( {\cos x} \right) = x$
$\sin^{ - 1}\left( {\sin x} \right) = x$
$\dfrac{d}{{dx}}\left( {\tan^{ - 1}x} \right) = \dfrac{1}{{1 + {x^2}}}$
$\dfrac{{dy}}{{dx}} = \dfrac{{\left( {\dfrac{{dy}}{{dt}}} \right)}}{{\left( {\dfrac{{dx}}{{dt}}} \right)}}$
Complete step by step solution:
The given trigonometric equations are $\cos x = \left( {\dfrac{1}{{\sqrt {\left( {1 + {t^2}} \right)} }}} \right)$, and $\sin y = \left( {\dfrac{t}{{\sqrt {\left( {1 + {t^2}} \right)} }}} \right)$.
Let’s simplify both equations.
$\cos x = \left( {\dfrac{1}{{\sqrt {\left( {1 + {t^2}} \right)} }}} \right)$
$ \Rightarrow x = \cos^{ - 1}\left( {\dfrac{1}{{\sqrt {\left( {1 + {t^2}} \right)} }}} \right)$
Substitute $t = \tan\theta $ in the above equation.
$x = \cos^{ - 1}\left( {\dfrac{1}{{\sqrt {\left( {1 + \tan^{2}\theta } \right)} }}} \right)$
$ \Rightarrow x = \cos^{ - 1}\left( {\dfrac{1}{{\sqrt {\sec^{2}\theta } }}} \right)$ [Since $\sec^{2}\theta - 1 = \tan^{2}\theta $]
$ \Rightarrow x = \cos^{ - 1}\left( {\dfrac{1}{{\sec\theta }}} \right)$
$ \Rightarrow x = \cos^{ - 1}\left( {\cos \theta } \right)$ [Since $\dfrac{1}{{\sec x}} = \cos x$]
$ \Rightarrow x = \theta $ [Since $\cos^{ - 1}\left( {\cos x} \right) = x$]
Re-substitute the value of $\theta $ in the above equation.
$x = \tan^{ - 1}t$
Now differentiate the above equation with respect to $t$.
$\dfrac{{dx}}{{dt}} = \dfrac{d}{{dt}}\left( {\tan^{ - 1}t} \right)$
Apply the formula $\dfrac{d}{{dx}}\left( {\tan^{ - 1}x} \right) = \dfrac{1}{{1 + {x^2}}}$.
$\dfrac{{dx}}{{dt}} = \dfrac{1}{{1 + {t^2}}}$ $.....\left( 1 \right)$
Now simplify the given equation $\sin y = \left( {\dfrac{t}{{\sqrt {\left( {1 + {t^2}} \right)} }}} \right)$.
$ \Rightarrow y = \sin^{ - 1}\left( {\dfrac{t}{{\sqrt {\left( {1 + {t^2}} \right)} }}} \right)$
Substitute $t = \tan\theta $ in the above equation.
$y = \sin^{ - 1}\left( {\dfrac{{\tan\theta }}{{\sqrt {\left( {1 + \tan^{2}\theta } \right)} }}} \right)$
$ \Rightarrow y = \sin^{ - 1}\left( {\dfrac{{\tan \theta }}{{\sqrt {\sec^{2}\theta } }}} \right)$ [Since $\sec^{2}\theta - 1 = \tan^{2}\theta $]
$ \Rightarrow y = \sin^{ - 1}\left( {\dfrac{{\tan \theta }}{{\sec \theta }}} \right)$
$ \Rightarrow y = \sin^{ - 1}\left( {\dfrac{{\dfrac{{\sin \theta }}{{\cos \theta }}}}{{\dfrac{1}{{\cos \theta }}}}} \right)$ [Since $\dfrac{1}{{\sec x}} = \cos x$ and $\dfrac{{\sin x}}{{\cos x}} = \tan x$]
$ \Rightarrow y = \sin^{ - 1}\left( {\sin \theta } \right)$
$ \Rightarrow y = \theta $ [Since $\sin^{ - 1}\left( {\sin x} \right) = x$]
Re-substitute the value of $\theta $ in the above equation.
$y = \tan^{ - 1}t$
Now differentiate the above equation with respect to $t$.
$\dfrac{{dy}}{{dt}} = \dfrac{d}{{dt}}\left( {\tan^{ - 1}t} \right)$
Apply the formula $\dfrac{d}{{dx}}\left( {\tan^{ - 1}x} \right) = \dfrac{1}{{1 + {x^2}}}$.
$\dfrac{{dy}}{{dt}} = \dfrac{1}{{1 + {t^2}}}$ $.....\left( 2 \right)$
Now apply the formula $\dfrac{{dy}}{{dx}} = \dfrac{{\left( {\dfrac{{dy}}{{dt}}} \right)}}{{\left( {\dfrac{{dx}}{{dt}}} \right)}}$.
Substitute the equations $\left( 1 \right)$ and $\left( 2 \right)$ in the above formula.
$\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{1}{{1 + {t^2}}}}}{{\dfrac{1}{{1 + {t^2}}}}}$
$ \Rightarrow \dfrac{{dy}}{{dx}} = 1$
Option ‘A’ is correct
Note: Students often make the mistake of applying the formula to calculate $\dfrac{{dy}}{{dx}}$. Sometimes they used $\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{dt}} \cdot \dfrac{{dx}}{{dt}}$ which is an incorrect formula. The correct formula is $\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{dt}}}}{{\dfrac{{dx}}{{dt}}}}$.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

