
If C (the velocity of light) g, (the acceleration due to gravity), and P(the atmospheric pressure) are the fundamental quantities in MKS system, then the dimensions of length will be same as that of
A. $C/g$
B. $C/P$
C. $PCg$
D. ${C^2}/g$
Answer
153.6k+ views
Hint: In this question, we will simply equate the dimensions of C, g, P with the dimensions of length and compare them.
Dimensions of velocity of light is given by-
Dim $C = [{M^0}{L^1}{T^{ - 1}}]$
Dimensions of acceleration of gravity is given by-
Dim $g = [{M^0}{L^1}{T^{ - 2}}]$
Dimensions of atmospheric pressure is given by-
Dim $P = [{M^1}{L^{ - 1}}{T^{ - 2}}]$
Complete step-by-step answer:
Given: Velocity of light=C
Acceleration due to gravity - g
Pressure -P
Let 'L' be the length.
Let's assume,
$L = {C^x}{g^y}{P^z}$ …eq i)
Now putting all the values in above equation,
$[{M^0}L{T^0}]$=${[{M^0}{L^1}{T^{ - 1}}]^x}{[{M^0}{L^1}{T^{ - 2}}]^y}{[{M^1}{L^{ - 1}}{T^{ - 2}}]^z}$
⇒$[{M^0}{L^1}{T^0}] = [{M^z}{L^{x + y - z}}{T^{ - x - 2y - 2z}}]$
Applying the principle of homogeneity,
Comparing the powers of M,
$z = 0$
Compare the powers of L,
$x + y - z = 1$ ( As z=0)
⇒$x + y = 1$
⇒$x = 1 - y$ …eq ii)
Compare the powers of T,
$ - x - 2y - 2z = 0$ ( As z=0)
⇒$ - x - 2y = 0$ …eq iii)
Put the value of eq ii) in above equation, we get
⇒ $ - (1 - y) - 2y = 0$
⇒$y = - 1$
Putting the value of y in eq ii), we get
⇒$x = 2$
Now, put the values of x, y and z in eq i)
Therefore, the dimensions of length will be:
$L = {C^2}{g^{ - 1}}{P^0}$
⇒$L = \dfrac{{{C^2}}}{g}$
Hence, option D is the correct answer.
Note: Principle of Homogeneity: It states that dimensions of each of the terms of a dimensional equation on both sides should be the same. This principle is helpful because it helps us convert the units from one form to another.
Applications of Dimensional Analysis:
1. To check the consistency of a dimensional equation.
2. To derive the relation between physical quantities in physical phenomena.
3. To change units from one system to another.
Dimensions of velocity of light is given by-
Dim $C = [{M^0}{L^1}{T^{ - 1}}]$
Dimensions of acceleration of gravity is given by-
Dim $g = [{M^0}{L^1}{T^{ - 2}}]$
Dimensions of atmospheric pressure is given by-
Dim $P = [{M^1}{L^{ - 1}}{T^{ - 2}}]$
Complete step-by-step answer:
Given: Velocity of light=C
Acceleration due to gravity - g
Pressure -P
Let 'L' be the length.
Let's assume,
$L = {C^x}{g^y}{P^z}$ …eq i)
Now putting all the values in above equation,
$[{M^0}L{T^0}]$=${[{M^0}{L^1}{T^{ - 1}}]^x}{[{M^0}{L^1}{T^{ - 2}}]^y}{[{M^1}{L^{ - 1}}{T^{ - 2}}]^z}$
⇒$[{M^0}{L^1}{T^0}] = [{M^z}{L^{x + y - z}}{T^{ - x - 2y - 2z}}]$
Applying the principle of homogeneity,
Comparing the powers of M,
$z = 0$
Compare the powers of L,
$x + y - z = 1$ ( As z=0)
⇒$x + y = 1$
⇒$x = 1 - y$ …eq ii)
Compare the powers of T,
$ - x - 2y - 2z = 0$ ( As z=0)
⇒$ - x - 2y = 0$ …eq iii)
Put the value of eq ii) in above equation, we get
⇒ $ - (1 - y) - 2y = 0$
⇒$y = - 1$
Putting the value of y in eq ii), we get
⇒$x = 2$
Now, put the values of x, y and z in eq i)
Therefore, the dimensions of length will be:
$L = {C^2}{g^{ - 1}}{P^0}$
⇒$L = \dfrac{{{C^2}}}{g}$
Hence, option D is the correct answer.
Note: Principle of Homogeneity: It states that dimensions of each of the terms of a dimensional equation on both sides should be the same. This principle is helpful because it helps us convert the units from one form to another.
Applications of Dimensional Analysis:
1. To check the consistency of a dimensional equation.
2. To derive the relation between physical quantities in physical phenomena.
3. To change units from one system to another.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Electrical Field of Charged Spherical Shell - JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
