
If C (the velocity of light) g, (the acceleration due to gravity), and P(the atmospheric pressure) are the fundamental quantities in MKS system, then the dimensions of length will be same as that of
A. $C/g$
B. $C/P$
C. $PCg$
D. ${C^2}/g$
Answer
217.2k+ views
Hint: In this question, we will simply equate the dimensions of C, g, P with the dimensions of length and compare them.
Dimensions of velocity of light is given by-
Dim $C = [{M^0}{L^1}{T^{ - 1}}]$
Dimensions of acceleration of gravity is given by-
Dim $g = [{M^0}{L^1}{T^{ - 2}}]$
Dimensions of atmospheric pressure is given by-
Dim $P = [{M^1}{L^{ - 1}}{T^{ - 2}}]$
Complete step-by-step answer:
Given: Velocity of light=C
Acceleration due to gravity - g
Pressure -P
Let 'L' be the length.
Let's assume,
$L = {C^x}{g^y}{P^z}$ …eq i)
Now putting all the values in above equation,
$[{M^0}L{T^0}]$=${[{M^0}{L^1}{T^{ - 1}}]^x}{[{M^0}{L^1}{T^{ - 2}}]^y}{[{M^1}{L^{ - 1}}{T^{ - 2}}]^z}$
⇒$[{M^0}{L^1}{T^0}] = [{M^z}{L^{x + y - z}}{T^{ - x - 2y - 2z}}]$
Applying the principle of homogeneity,
Comparing the powers of M,
$z = 0$
Compare the powers of L,
$x + y - z = 1$ ( As z=0)
⇒$x + y = 1$
⇒$x = 1 - y$ …eq ii)
Compare the powers of T,
$ - x - 2y - 2z = 0$ ( As z=0)
⇒$ - x - 2y = 0$ …eq iii)
Put the value of eq ii) in above equation, we get
⇒ $ - (1 - y) - 2y = 0$
⇒$y = - 1$
Putting the value of y in eq ii), we get
⇒$x = 2$
Now, put the values of x, y and z in eq i)
Therefore, the dimensions of length will be:
$L = {C^2}{g^{ - 1}}{P^0}$
⇒$L = \dfrac{{{C^2}}}{g}$
Hence, option D is the correct answer.
Note: Principle of Homogeneity: It states that dimensions of each of the terms of a dimensional equation on both sides should be the same. This principle is helpful because it helps us convert the units from one form to another.
Applications of Dimensional Analysis:
1. To check the consistency of a dimensional equation.
2. To derive the relation between physical quantities in physical phenomena.
3. To change units from one system to another.
Dimensions of velocity of light is given by-
Dim $C = [{M^0}{L^1}{T^{ - 1}}]$
Dimensions of acceleration of gravity is given by-
Dim $g = [{M^0}{L^1}{T^{ - 2}}]$
Dimensions of atmospheric pressure is given by-
Dim $P = [{M^1}{L^{ - 1}}{T^{ - 2}}]$
Complete step-by-step answer:
Given: Velocity of light=C
Acceleration due to gravity - g
Pressure -P
Let 'L' be the length.
Let's assume,
$L = {C^x}{g^y}{P^z}$ …eq i)
Now putting all the values in above equation,
$[{M^0}L{T^0}]$=${[{M^0}{L^1}{T^{ - 1}}]^x}{[{M^0}{L^1}{T^{ - 2}}]^y}{[{M^1}{L^{ - 1}}{T^{ - 2}}]^z}$
⇒$[{M^0}{L^1}{T^0}] = [{M^z}{L^{x + y - z}}{T^{ - x - 2y - 2z}}]$
Applying the principle of homogeneity,
Comparing the powers of M,
$z = 0$
Compare the powers of L,
$x + y - z = 1$ ( As z=0)
⇒$x + y = 1$
⇒$x = 1 - y$ …eq ii)
Compare the powers of T,
$ - x - 2y - 2z = 0$ ( As z=0)
⇒$ - x - 2y = 0$ …eq iii)
Put the value of eq ii) in above equation, we get
⇒ $ - (1 - y) - 2y = 0$
⇒$y = - 1$
Putting the value of y in eq ii), we get
⇒$x = 2$
Now, put the values of x, y and z in eq i)
Therefore, the dimensions of length will be:
$L = {C^2}{g^{ - 1}}{P^0}$
⇒$L = \dfrac{{{C^2}}}{g}$
Hence, option D is the correct answer.
Note: Principle of Homogeneity: It states that dimensions of each of the terms of a dimensional equation on both sides should be the same. This principle is helpful because it helps us convert the units from one form to another.
Applications of Dimensional Analysis:
1. To check the consistency of a dimensional equation.
2. To derive the relation between physical quantities in physical phenomena.
3. To change units from one system to another.
Recently Updated Pages
Addition of Three Vectors: Methods & Examples

Addition of Vectors: Simple Guide for Students

Algebra Made Easy: Step-by-Step Guide for Students

Relations and Functions: Complete Guide for Students

Analytical Method of Vector Addition Explained Simply

Arithmetic, Geometric & Harmonic Progressions Explained

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Understanding Atomic Structure for Beginners

