
If $\alpha $,$\beta $,$\gamma $ are the distance of the vertices of a triangle of $ABC$ from the corresponding point of contact with the incircle, then
$(A)$. $s = \alpha + \beta + \gamma $
$(B)$. ${\gamma ^2} = \dfrac{{\alpha \beta \gamma }}{{\alpha + \beta + \gamma }}$
$(C)$. ${\Delta ^2} = \left( {\alpha + \beta + \gamma } \right)\alpha \beta \gamma $
$(D)$. $2s = \alpha + \beta + \gamma $
Answer
218.7k+ views
Hint: Use theorem tangent to the circle to find sides of the triangle and Heron’s formula to compute the area of the triangle.

Let ABC be the triangle with incircle inside as given in the problem.
Let the incircle touch the sides of the triangle ABC at points D,E and F respectively .
It is given that $\alpha $,$\beta $,$\gamma $ are the distance of the vertices of a triangle of $ABC$ from the corresponding point of contact with the incircle.
Therefore, we assume,
$
AD = \alpha \\
BD = \beta \\
CE = \gamma \\
$
Theorem tangent to the circle states that a point external to the circle subtends equal tangents to the circle.
Using this theorem in triangle $ABC$,we get
$
AE = \alpha \\
BF = \beta \\
CF = \gamma \\
$
We need to find the area of the triangle $ABC$ using Heron’s formula.
Heron’s formula states that area of the triangle is given by,
\[\Delta = \sqrt {s\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right)} {\text{ (1)}}\]
In the above equation, $s$ is the semi-perimeter of the triangle and $a,b,c$ are the sides of the triangle.
Sides of the triangle $ABC$ are given by
$\left(
a = AB = \alpha + \beta \\
b = BC = \beta + \gamma \\
c = AC = \alpha + \gamma \\
\right){\text{ (2)}}$
Semi-perimeter of triangle $ABC$ is given by,
$
s = \dfrac{{a + b + c}}{2} \\
\Rightarrow s = \dfrac{{\alpha + \beta + \beta + \gamma + \alpha + \gamma }}{2} = \alpha + \beta + \gamma {\text{ (3)}} \\
$
Using equation $(2)$and $(3)$ in $(1)$,we get
\[
\Delta = \sqrt {\left( {\alpha + \beta + \gamma } \right)\left( {\alpha + \beta + \gamma - \alpha - \beta } \right)\left( {\alpha + \beta + \gamma - \beta - \gamma } \right)\left( {\alpha + \beta + \gamma - \alpha - \gamma } \right)} \\
\Rightarrow \Delta = \sqrt {\left( {\alpha + \beta + \gamma } \right)\alpha \beta \gamma } {\text{ }} \\
\]
Squaring both sides of the above equation, we get
\[{\Delta ^2} = \left( {\alpha + \beta + \gamma } \right)\alpha \beta \gamma {\text{ }}\]
Hence option $(C)$. ${\Delta ^2} = \left( {\alpha + \beta + \gamma } \right)\alpha \beta \gamma $ is the correct answer.
Note: Always try to draw the diagram in problems related to incircle. Try to remember the properties of incircle. Geometrical theorems should also be kept in mind while solving similar problems.

Let ABC be the triangle with incircle inside as given in the problem.
Let the incircle touch the sides of the triangle ABC at points D,E and F respectively .
It is given that $\alpha $,$\beta $,$\gamma $ are the distance of the vertices of a triangle of $ABC$ from the corresponding point of contact with the incircle.
Therefore, we assume,
$
AD = \alpha \\
BD = \beta \\
CE = \gamma \\
$
Theorem tangent to the circle states that a point external to the circle subtends equal tangents to the circle.
Using this theorem in triangle $ABC$,we get
$
AE = \alpha \\
BF = \beta \\
CF = \gamma \\
$
We need to find the area of the triangle $ABC$ using Heron’s formula.
Heron’s formula states that area of the triangle is given by,
\[\Delta = \sqrt {s\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right)} {\text{ (1)}}\]
In the above equation, $s$ is the semi-perimeter of the triangle and $a,b,c$ are the sides of the triangle.
Sides of the triangle $ABC$ are given by
$\left(
a = AB = \alpha + \beta \\
b = BC = \beta + \gamma \\
c = AC = \alpha + \gamma \\
\right){\text{ (2)}}$
Semi-perimeter of triangle $ABC$ is given by,
$
s = \dfrac{{a + b + c}}{2} \\
\Rightarrow s = \dfrac{{\alpha + \beta + \beta + \gamma + \alpha + \gamma }}{2} = \alpha + \beta + \gamma {\text{ (3)}} \\
$
Using equation $(2)$and $(3)$ in $(1)$,we get
\[
\Delta = \sqrt {\left( {\alpha + \beta + \gamma } \right)\left( {\alpha + \beta + \gamma - \alpha - \beta } \right)\left( {\alpha + \beta + \gamma - \beta - \gamma } \right)\left( {\alpha + \beta + \gamma - \alpha - \gamma } \right)} \\
\Rightarrow \Delta = \sqrt {\left( {\alpha + \beta + \gamma } \right)\alpha \beta \gamma } {\text{ }} \\
\]
Squaring both sides of the above equation, we get
\[{\Delta ^2} = \left( {\alpha + \beta + \gamma } \right)\alpha \beta \gamma {\text{ }}\]
Hence option $(C)$. ${\Delta ^2} = \left( {\alpha + \beta + \gamma } \right)\alpha \beta \gamma $ is the correct answer.
Note: Always try to draw the diagram in problems related to incircle. Try to remember the properties of incircle. Geometrical theorems should also be kept in mind while solving similar problems.
Recently Updated Pages
Mutually Exclusive vs Independent Events: Key Differences Explained

Area vs Volume: Key Differences Explained for Students

The hybridization and shape of NH2 ion are a sp2 and class 11 chemistry JEE_Main

Two discs which are rotating about their respective class 11 physics JEE_Main

A square frame of side 10 cm and a long straight wire class 12 physics JEE_Main

The work done in slowly moving an electron of charge class 12 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Syllabus 2026: Download Detailed Subject-wise PDF

JEE Main Previous Year Question Papers (2014–2025) with Answer Keys and Solutions

Exothermic Reactions: Real-Life Examples, Equations, and Uses

Marks vs Percentile JEE Mains 2026: Calculate Percentile Marks

Understanding Newton’s Laws of Motion

Other Pages
NCERT Solutions For Class 9 Maths Chapter 9 Circles

NCERT Solutions for Class 9 Maths Chapter 11 Surface Area and Volume 2025-26

NCERT Solutions For Class 9 Maths Chapter 11 Surface Areas And Volumes

Fuel Cost Calculator – Estimate Your Journey Expenses Easily

NCERT Solutions For Class 9 Maths Chapter 12 Statistics

NCERT Solutions For Class 9 Maths Chapter 10 Heron's Formula

