
If $\alpha $ and $\beta $ are the roots of the quadratic equation ${{x}^{2}}-4x+1=0$, then find the values of \[{{\alpha }^{3}}+{{\beta }^{3}}\]
Answer
162k+ views
Hint: In this question we have given the quadratic equation and we have to find the value of \[{{\alpha }^{3}}+{{\beta }^{3}}\]. For this first we have to find the sum of roots and the product of roots .then we put these values in the formula of cube root and get the desirable answer.
Formula Used:
Sum of roots = $\dfrac{-b}{a}$
Product of roots = $\dfrac{c}{a}$
\[{{a}^{3}}+{{b}^{3}}={{(a+b)}^{3}}-3ab(a+b)\]
Complete step by step Solution:
Given quadratic equation is ${{x}^{2}}-4x+1=0$…………………………….. (1)
By comparing the equation (1) with the quadratic equation $a{{x}^{2}}+bx+c=0$
We are able to get a = 1, b = -4, c = +1
Let $\alpha $and $\beta $are the roots of the given quadratic equation.
Then we know general quadratic equation with the roots $\alpha $and $\beta $be
${{x}^{2}}-(\alpha +\beta )x+\alpha \beta =0$………………………………….. (2)
We know in quadratic equation
Sum of roots = $\dfrac{-b}{a}$ = $\dfrac{-(-4)}{1}$ = 4
And the product of roots = $\dfrac{c}{a}$= \[\dfrac{+1}{1}\]= 1
Now we compare the equation (1) and (2), we get
\[\alpha +\beta \]= $\dfrac{-b}{a}$= 4
And \[\alpha \beta \]= $\dfrac{c}{a}$= 1
Now we know the formula of \[{{a}^{3}}+{{b}^{3}}={{(a+b)}^{3}}-3ab(a+b)\]
By putting a = $\alpha $ and b = $\beta $, we get
\[{{\alpha }^{3}}+{{\beta }^{3}}={{(\alpha +\beta )}^{3}}-3\alpha \beta (\alpha +\beta )\]
By putting the values, we get
\[{{\alpha }^{3}}+{{\beta }^{3}}={{(4)}^{3}}-3(1)(4)\]
= 52
Hence, the value of \[{{\alpha }^{3}}+{{\beta }^{3}}=52\]
Note: Whenever we solve these types of questions where roots are given, we use the identity of the product of roots which is if x and y are the roots of any quadratic equation the value of xy will be equal to $\dfrac{ constant\, term}{coefficient\, of\, x^2}$ and sum of the roots that is x + y is equal to $\dfrac{ -coefficient\, of \,x}{coefficient\, of\, x^2}$ and by solving it we get the desired answer.
Formula Used:
Sum of roots = $\dfrac{-b}{a}$
Product of roots = $\dfrac{c}{a}$
\[{{a}^{3}}+{{b}^{3}}={{(a+b)}^{3}}-3ab(a+b)\]
Complete step by step Solution:
Given quadratic equation is ${{x}^{2}}-4x+1=0$…………………………….. (1)
By comparing the equation (1) with the quadratic equation $a{{x}^{2}}+bx+c=0$
We are able to get a = 1, b = -4, c = +1
Let $\alpha $and $\beta $are the roots of the given quadratic equation.
Then we know general quadratic equation with the roots $\alpha $and $\beta $be
${{x}^{2}}-(\alpha +\beta )x+\alpha \beta =0$………………………………….. (2)
We know in quadratic equation
Sum of roots = $\dfrac{-b}{a}$ = $\dfrac{-(-4)}{1}$ = 4
And the product of roots = $\dfrac{c}{a}$= \[\dfrac{+1}{1}\]= 1
Now we compare the equation (1) and (2), we get
\[\alpha +\beta \]= $\dfrac{-b}{a}$= 4
And \[\alpha \beta \]= $\dfrac{c}{a}$= 1
Now we know the formula of \[{{a}^{3}}+{{b}^{3}}={{(a+b)}^{3}}-3ab(a+b)\]
By putting a = $\alpha $ and b = $\beta $, we get
\[{{\alpha }^{3}}+{{\beta }^{3}}={{(\alpha +\beta )}^{3}}-3\alpha \beta (\alpha +\beta )\]
By putting the values, we get
\[{{\alpha }^{3}}+{{\beta }^{3}}={{(4)}^{3}}-3(1)(4)\]
= 52
Hence, the value of \[{{\alpha }^{3}}+{{\beta }^{3}}=52\]
Note: Whenever we solve these types of questions where roots are given, we use the identity of the product of roots which is if x and y are the roots of any quadratic equation the value of xy will be equal to $\dfrac{ constant\, term}{coefficient\, of\, x^2}$ and sum of the roots that is x + y is equal to $\dfrac{ -coefficient\, of \,x}{coefficient\, of\, x^2}$ and by solving it we get the desired answer.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Cutoff Percentile for 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
