
If \[\alpha \]and \[\beta \]are the roots of \[\begin{array}{*{20}{c}}
{6{x^2} - 6x + 1}& = &0
\end{array}\], then the value of
\[\dfrac{1}{2}\left[ {a + b\alpha + c{\alpha ^2} + d{\alpha ^3}} \right] + \dfrac{1}{2}\left[ {a + b\beta + c{\beta ^2} + d{\beta ^3}} \right]\] is
A) \[\dfrac{1}{4}\left( {a + b + c + d} \right)\]
B) \[\dfrac{a}{1} + \dfrac{b}{2} + \dfrac{c}{3} + \dfrac{d}{4}\]
C) \[\dfrac{a}{2} - \dfrac{b}{2} + \dfrac{c}{3} - \dfrac{d}{4}\]
D) None of these
Answer
164.4k+ views
Hint: during this question we've got given the equation whose roots area unit given. 1st of all, we are going to verify the add and therefore the product of the roots of the given equation. so we are going to modify the given expression. afterward, we are going to place these values within the expression. Hence, we are going to get an acceptable answer.
Formula Used:1) \[\begin{array}{*{20}{c}}
{\alpha + \beta }& = &{ - \dfrac{b}{a}}
\end{array}\]
2) \[\begin{array}{*{20}{c}}
{\alpha \beta }& = &{\dfrac{c}{a}}
\end{array}\]
3) \[\begin{array}{*{20}{c}}
{{{\left( {\alpha + \beta } \right)}^2}}& = &{{\alpha ^2} + {\beta ^2} + 2\alpha \beta }
\end{array}\]
4) \[\begin{array}{*{20}{c}}
{{{\left( {\alpha + \beta } \right)}^3}}& = &{{\alpha ^3} + {\beta ^3} + 3\alpha \beta \left( {\alpha + \beta } \right)}
\end{array}\]
Complete step by step solution:According to the question, we have the equation whose roots are \[\alpha \]and \[\beta \]respectively. Now we will write the equation,
\[ \Rightarrow \begin{array}{*{20}{c}}
{6{x^2} - 6x + 1}& = &0
\end{array}\]
Now we will determine the sum and the product of the roots of the equation. Therefore, we can write
\[\begin{array}{*{20}{c}}
{ \Rightarrow \alpha + \beta }& = &{\dfrac{6}{6}}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow \alpha + \beta }& = &1
\end{array}\] ------ (1)
And we know the product of the roots of the equation. Therefore, we can write it as
\[\begin{array}{*{20}{c}}
{ \Rightarrow \alpha \beta }& = &{\dfrac{1}{6}}
\end{array}\] -------- (2)
Now we have given an expression whose value we have to determine.
\[ \Rightarrow \dfrac{1}{2}\left[ {a + b\alpha + c{\alpha ^2} + d{\alpha ^3}} \right] + \dfrac{1}{2}\left[ {a + b\beta + c{\beta ^2} + d{\beta ^3}} \right]\]
Now we will take the common \[\dfrac{1}{2}\]from the above expression. Therefore, we will get
\[ \Rightarrow \dfrac{1}{2}\left[ {\left( {a + b\alpha + c{\alpha ^2} + d{\alpha ^3}} \right) + \left( {a + b\beta + c{\beta ^2} + d{\beta ^3}} \right)} \right]\]
Now we will combine the same variable terms. Therefore, we will get
\[ \Rightarrow \dfrac{1}{2}\left[ {2a + b\left( {\alpha + \beta } \right) + c\left( {{\alpha ^2} + {\beta ^2}} \right) + d\left( {{\alpha ^3} + {\beta ^3}} \right)} \right]\] ---------- (3)
Now we know the formula of the \[{\left( {\alpha + \beta } \right)^2}\]and \[{\left( {\alpha + \beta } \right)^3}\]. Therefore, we will write is as
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\left( {\alpha + \beta } \right)}^2}}& = &{{\alpha ^2} + {\beta ^2} + 2\alpha \beta }
\end{array}\]
Now
\[\begin{array}{*{20}{c}}
{ \Rightarrow {\alpha ^2} + {\beta ^2}}& = &{{{\left( {\alpha + \beta } \right)}^2} - 2\alpha \beta }
\end{array}\]
Similarly,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {\alpha ^3} + {\beta ^3}}& = &{{{\left( {\alpha + \beta } \right)}^3} - 3\alpha \beta \left( {\alpha + \beta } \right)}
\end{array}\]
Now we will put these values in equation (3). Therefore, we will get
\[ \Rightarrow \dfrac{1}{2}\left[ {2a + b\left( {\alpha + \beta } \right) + c\left\{ {{{\left( {\alpha + \beta } \right)}^2} - 2\alpha \beta } \right\} + d\left\{ {{{\left( {\alpha + \beta } \right)}^3} - 3\alpha \beta \left( {\alpha + \beta } \right)} \right\}} \right]\]
Now we will put the value of the equation (1) and (2) in the above expression. Therefore, we will get
\[ \Rightarrow \dfrac{1}{2}\left[ {2a + b\left( 1 \right) + c\left\{ {{{\left( 1 \right)}^2} - 2 \times \dfrac{1}{6}} \right\} + d\left\{ {{{\left( 1 \right)}^3} - 3 \times \dfrac{1}{6}\left( 1 \right)} \right\}} \right]\]
\[ \Rightarrow \dfrac{1}{2}\left[ {2a + b\left( 1 \right) + c\left( {\dfrac{2}{3}} \right) + d\left( {\dfrac{1}{2}} \right)} \right]\]
By simplifying the on top of the expression, we are going to get
\[ \Rightarrow \dfrac{a}{1} + \dfrac{b}{2} + \dfrac{c}{3} + \dfrac{d}{4}\]
Now we can choose the correct answer from the given option.
Option ‘B’ is correct
Note: In this question, the first point is to keep in mind that we will put the value of the sum and the product of the roots of the equation when we will get the simplified expression.
Formula Used:1) \[\begin{array}{*{20}{c}}
{\alpha + \beta }& = &{ - \dfrac{b}{a}}
\end{array}\]
2) \[\begin{array}{*{20}{c}}
{\alpha \beta }& = &{\dfrac{c}{a}}
\end{array}\]
3) \[\begin{array}{*{20}{c}}
{{{\left( {\alpha + \beta } \right)}^2}}& = &{{\alpha ^2} + {\beta ^2} + 2\alpha \beta }
\end{array}\]
4) \[\begin{array}{*{20}{c}}
{{{\left( {\alpha + \beta } \right)}^3}}& = &{{\alpha ^3} + {\beta ^3} + 3\alpha \beta \left( {\alpha + \beta } \right)}
\end{array}\]
Complete step by step solution:According to the question, we have the equation whose roots are \[\alpha \]and \[\beta \]respectively. Now we will write the equation,
\[ \Rightarrow \begin{array}{*{20}{c}}
{6{x^2} - 6x + 1}& = &0
\end{array}\]
Now we will determine the sum and the product of the roots of the equation. Therefore, we can write
\[\begin{array}{*{20}{c}}
{ \Rightarrow \alpha + \beta }& = &{\dfrac{6}{6}}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow \alpha + \beta }& = &1
\end{array}\] ------ (1)
And we know the product of the roots of the equation. Therefore, we can write it as
\[\begin{array}{*{20}{c}}
{ \Rightarrow \alpha \beta }& = &{\dfrac{1}{6}}
\end{array}\] -------- (2)
Now we have given an expression whose value we have to determine.
\[ \Rightarrow \dfrac{1}{2}\left[ {a + b\alpha + c{\alpha ^2} + d{\alpha ^3}} \right] + \dfrac{1}{2}\left[ {a + b\beta + c{\beta ^2} + d{\beta ^3}} \right]\]
Now we will take the common \[\dfrac{1}{2}\]from the above expression. Therefore, we will get
\[ \Rightarrow \dfrac{1}{2}\left[ {\left( {a + b\alpha + c{\alpha ^2} + d{\alpha ^3}} \right) + \left( {a + b\beta + c{\beta ^2} + d{\beta ^3}} \right)} \right]\]
Now we will combine the same variable terms. Therefore, we will get
\[ \Rightarrow \dfrac{1}{2}\left[ {2a + b\left( {\alpha + \beta } \right) + c\left( {{\alpha ^2} + {\beta ^2}} \right) + d\left( {{\alpha ^3} + {\beta ^3}} \right)} \right]\] ---------- (3)
Now we know the formula of the \[{\left( {\alpha + \beta } \right)^2}\]and \[{\left( {\alpha + \beta } \right)^3}\]. Therefore, we will write is as
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\left( {\alpha + \beta } \right)}^2}}& = &{{\alpha ^2} + {\beta ^2} + 2\alpha \beta }
\end{array}\]
Now
\[\begin{array}{*{20}{c}}
{ \Rightarrow {\alpha ^2} + {\beta ^2}}& = &{{{\left( {\alpha + \beta } \right)}^2} - 2\alpha \beta }
\end{array}\]
Similarly,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {\alpha ^3} + {\beta ^3}}& = &{{{\left( {\alpha + \beta } \right)}^3} - 3\alpha \beta \left( {\alpha + \beta } \right)}
\end{array}\]
Now we will put these values in equation (3). Therefore, we will get
\[ \Rightarrow \dfrac{1}{2}\left[ {2a + b\left( {\alpha + \beta } \right) + c\left\{ {{{\left( {\alpha + \beta } \right)}^2} - 2\alpha \beta } \right\} + d\left\{ {{{\left( {\alpha + \beta } \right)}^3} - 3\alpha \beta \left( {\alpha + \beta } \right)} \right\}} \right]\]
Now we will put the value of the equation (1) and (2) in the above expression. Therefore, we will get
\[ \Rightarrow \dfrac{1}{2}\left[ {2a + b\left( 1 \right) + c\left\{ {{{\left( 1 \right)}^2} - 2 \times \dfrac{1}{6}} \right\} + d\left\{ {{{\left( 1 \right)}^3} - 3 \times \dfrac{1}{6}\left( 1 \right)} \right\}} \right]\]
\[ \Rightarrow \dfrac{1}{2}\left[ {2a + b\left( 1 \right) + c\left( {\dfrac{2}{3}} \right) + d\left( {\dfrac{1}{2}} \right)} \right]\]
By simplifying the on top of the expression, we are going to get
\[ \Rightarrow \dfrac{a}{1} + \dfrac{b}{2} + \dfrac{c}{3} + \dfrac{d}{4}\]
Now we can choose the correct answer from the given option.
Option ‘B’ is correct
Note: In this question, the first point is to keep in mind that we will put the value of the sum and the product of the roots of the equation when we will get the simplified expression.
Recently Updated Pages
Biot Savart Law - Statement, Derivation and FAQ

Newton’s Laws of Motion – Definition, Principles, and Examples

JEE Main Physics Kinematics for JEE Main 2025

Difference Between Natural and Whole Numbers: JEE Main 2024

Hess Law of Constant Heat Summation: Definition, Formula & Applications

Properties of Isosceles Trapezium: Definition, Features & Uses

Trending doubts
JEE Main Marks Vs Percentile Vs Rank 2025: Calculate Percentile Using Marks

JEE Mains 2025 Cutoff: Expected and Category-Wise Qualifying Marks for NITs, IIITs, and GFTIs

NIT Cutoff Percentile for 2025

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025 CutOff for NIT - Predicted Ranks and Scores

Other Pages
NCERT Solutions for Class 10 Maths Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related To Circles

NCERT Solutions for Class 10 Maths Chapter 12 Surface Area and Volume

NCERT Solutions for Class 10 Maths Chapter 14 Probability

NCERT Solutions for Class 10 Maths In Hindi Chapter 15 Probability

Total MBBS Seats in India 2025: Government and Private Medical Colleges
