Answer
Verified
103.8k+ views
Hint: Think about Newton's law of gravitation and try to use the relation between acceleration due to gravity and the universal gravitational constant. The acceleration due to gravity depends on the radius of the planet or satellite and so that has different values for moon and earth as their radii vary.
Complete step by step solution:
The law of universal gravity of Newton is normally that any particle attracts every other particle in the universe with a force strictly proportional and inversely proportional to the distance between its cores. Or, the rule says that every point mass is attracted by force along the line between the two lines, by every other point mass. The power is proportional to the production of the two masses and inversely proportional to their distance.
Now, according to gravity equation, we know that
\[g \propto \dfrac{{GM}}{{{R^2}}}\]
$g$ is acceleration due to gravity,
$G$ is the gravitational constant,
$M$ is the mass of the body and,
$R$ is the radius of the body.
Now, the acceleration due to gravity ${g_p} $ on different planet can be written as
${g_p} = (\dfrac{{{M_p}}}{{{M_e}}} \times {(\frac{{{R_e}}}{{{R_p}}})^2})g$
${M_p} $ is the mass of the object on planet
${M_e} $ is the mass of the object on earth.
${R_p} $ is the radius of the object on the planet.
${R_e} $ is the radius of the object on earth.
Putting the values given in the question,
$ \Rightarrow {g_p} = 2 \times {(\dfrac{1}{2})^2}g$
${g_p} = \dfrac{g}{2}$
${g_p} = 4.9m{s^ {- 2}} $
The acceleration due to gravity ${g_p} $ on different planets is $4.9m{s^ {- 2}} $.
Hence the correct option is A.
Note: Since the force of gravity is directly commensurate with the mass of all interacting objects, more large objects are drawn with a greater force. If the mass of all objects increases, the gravitational force also increases between them. If the mass of one object is doubled, the gravitational power is doubled between them. If the mass of one object is multiplied, the force of gravity is tripled between the objects. The force of gravity on these two objects is quadrupled by the density of all objects, etc.
As the gravitational power is inversely equal to the dividing distance square between the two interacting objects, further dividing distance produces weaker gravitational force. The force of gravitational interaction between them also reduces, when two objects are isolated from each other.
Complete step by step solution:
The law of universal gravity of Newton is normally that any particle attracts every other particle in the universe with a force strictly proportional and inversely proportional to the distance between its cores. Or, the rule says that every point mass is attracted by force along the line between the two lines, by every other point mass. The power is proportional to the production of the two masses and inversely proportional to their distance.
Now, according to gravity equation, we know that
\[g \propto \dfrac{{GM}}{{{R^2}}}\]
$g$ is acceleration due to gravity,
$G$ is the gravitational constant,
$M$ is the mass of the body and,
$R$ is the radius of the body.
Now, the acceleration due to gravity ${g_p} $ on different planet can be written as
${g_p} = (\dfrac{{{M_p}}}{{{M_e}}} \times {(\frac{{{R_e}}}{{{R_p}}})^2})g$
${M_p} $ is the mass of the object on planet
${M_e} $ is the mass of the object on earth.
${R_p} $ is the radius of the object on the planet.
${R_e} $ is the radius of the object on earth.
Putting the values given in the question,
$ \Rightarrow {g_p} = 2 \times {(\dfrac{1}{2})^2}g$
${g_p} = \dfrac{g}{2}$
${g_p} = 4.9m{s^ {- 2}} $
The acceleration due to gravity ${g_p} $ on different planets is $4.9m{s^ {- 2}} $.
Hence the correct option is A.
Note: Since the force of gravity is directly commensurate with the mass of all interacting objects, more large objects are drawn with a greater force. If the mass of all objects increases, the gravitational force also increases between them. If the mass of one object is doubled, the gravitational power is doubled between them. If the mass of one object is multiplied, the force of gravity is tripled between the objects. The force of gravity on these two objects is quadrupled by the density of all objects, etc.
As the gravitational power is inversely equal to the dividing distance square between the two interacting objects, further dividing distance produces weaker gravitational force. The force of gravitational interaction between them also reduces, when two objects are isolated from each other.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
For pure water A pH increases while pOH decreases with class 11 chemistry JEE_Main
A physical quantity which has a direction A Must be class 11 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Formula for number of images formed by two plane mirrors class 12 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main