
If \[a,b,c,d\]are any four consecutive coefficients of any expanded binomial, then \[\frac{{a + b}}{a},\frac{{b + c}}{b},\frac{{c + d}}{c}\]are in
A. A.P.
B. G.P.
C. H.P.
D. None of the above
Answer
232.8k+ views
Hint
The process of expanding and writing terms that are equal to the natural number exponent of the sum or difference of two terms is known as binomial expansion. The exponents of both terms added together in the general term equal n, and the coefficient values are obtained from the Pascal's triangle or by applying the combinations formula. When a bracket is expanded, each term is multiplied by the expression outside of the bracket.
A binomial is a two-term algebraic expression that includes a constant, exponents, a variable, and a coefficient. We must multiply out the brackets in order to expand and simplify an expression, and we must then collect like words in order to simplify the resulting expression.
Formula used:
The arithmetic progression is \[a,b,c\]
\[(b - a) = (c - b)\]
The geometric progression is \[a,b,c\]
\[{b^2} = ac\].
Complete step-by-step solution
The expansion of the series be \[{(1 + x)^n}\]
\[a,b,c,d\]be the \[(r + 1)\]th , \[(r + 2)\]th, \[(r + 3)\]th and \[(r + 4)\]th coefficients.
So, \[a{ = ^n}{C_r},b{ = ^n}{C_{r + 1}},c{ = ^n}{C_{r + 2}},d{ = ^n}{C_{r + 3}}\]
Here, \[\frac{a}{{a + b}} = \frac{{^n{C_r}}}{{^n{C_r}{ + ^n}{C_{r + 1}}}}\]
\[\frac{{^n{C_r}}}{{^{n + 1}{C_{r + 1}}}} = \frac{{n!}}{{r!(n - r)!}} \times \frac{{(r + 1)!(n - r)!}}{{(n + 1)!}}\]
\[ = > \frac{{r + 1}}{{n + 1}}\]
Likely, \[\frac{b}{{b + c}} = \frac{{(r + 1) + 1}}{{n + 1}} = \frac{{r + 2}}{{n + 1}}\]
\[\frac{c}{{c + d}} = \frac{{(r + 2) + 1}}{{n + 1}} = \frac{{r + 3}}{{n + 1}}\]
The series in A.P are
\[ = > \frac{a}{{a + b}},\frac{b}{{b + c}},\frac{c}{{c + d}}\]
The series in H.P are
\[ = > \frac{{a + b}}{a},\frac{{b + c}}{b},\frac{{c + d}}{c}\]
Therefore, the correct option is C.
Note
The number of ways to choose unordered results from potential outcomes is known as the binomial coefficient, commonly referred to as a combination or combinatorial number. When used to represent a binomial coefficient, the symbols and are sometimes read as " select ".
Each row is constrained on both sides by 1 and each coefficient is derived by adding two coefficients from the preceding row, one on the immediate left and one on the immediate right.
The process of expanding and writing terms that are equal to the natural number exponent of the sum or difference of two terms is known as binomial expansion. The exponents of both terms added together in the general term equal n, and the coefficient values are obtained from the Pascal's triangle or by applying the combinations formula. When a bracket is expanded, each term is multiplied by the expression outside of the bracket.
A binomial is a two-term algebraic expression that includes a constant, exponents, a variable, and a coefficient. We must multiply out the brackets in order to expand and simplify an expression, and we must then collect like words in order to simplify the resulting expression.
Formula used:
The arithmetic progression is \[a,b,c\]
\[(b - a) = (c - b)\]
The geometric progression is \[a,b,c\]
\[{b^2} = ac\].
Complete step-by-step solution
The expansion of the series be \[{(1 + x)^n}\]
\[a,b,c,d\]be the \[(r + 1)\]th , \[(r + 2)\]th, \[(r + 3)\]th and \[(r + 4)\]th coefficients.
So, \[a{ = ^n}{C_r},b{ = ^n}{C_{r + 1}},c{ = ^n}{C_{r + 2}},d{ = ^n}{C_{r + 3}}\]
Here, \[\frac{a}{{a + b}} = \frac{{^n{C_r}}}{{^n{C_r}{ + ^n}{C_{r + 1}}}}\]
\[\frac{{^n{C_r}}}{{^{n + 1}{C_{r + 1}}}} = \frac{{n!}}{{r!(n - r)!}} \times \frac{{(r + 1)!(n - r)!}}{{(n + 1)!}}\]
\[ = > \frac{{r + 1}}{{n + 1}}\]
Likely, \[\frac{b}{{b + c}} = \frac{{(r + 1) + 1}}{{n + 1}} = \frac{{r + 2}}{{n + 1}}\]
\[\frac{c}{{c + d}} = \frac{{(r + 2) + 1}}{{n + 1}} = \frac{{r + 3}}{{n + 1}}\]
The series in A.P are
\[ = > \frac{a}{{a + b}},\frac{b}{{b + c}},\frac{c}{{c + d}}\]
The series in H.P are
\[ = > \frac{{a + b}}{a},\frac{{b + c}}{b},\frac{{c + d}}{c}\]
Therefore, the correct option is C.
Note
The number of ways to choose unordered results from potential outcomes is known as the binomial coefficient, commonly referred to as a combination or combinatorial number. When used to represent a binomial coefficient, the symbols and are sometimes read as " select ".
Each row is constrained on both sides by 1 and each coefficient is derived by adding two coefficients from the preceding row, one on the immediate left and one on the immediate right.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

