
If \[a=3i-2j+2k\],\[b=6i+4j-2k\] and \[c=3i-2j-4k\],then $a.(b\times c)$is [Karnataka CET 2001]
A. $122$
B. $-144$
C. $120$
D. $-120$
Answer
164.7k+ views
Hint: Let $\vec{a},\vec{b}$and$\vec{c}$are three vectors. Then the scalar product of $\vec{a}$ and $(\vec{b}\times \vec{c})$ that is $a.(b\times c)$called as the triple product of $\vec{a},\vec{b}$and $\vec{c}$.
If \[a={{a}_{1}}i+{{a}_{2}}j+{{a}_{3}}k,b={{b}_{1}}i+{{b}_{2}}j+{{b}_{3}}k\] and \[c={{c}_{1}}i+{{c}_{2}}j+{{c}_{3}}k\], then
$\vec{b}\times \vec{c}=\left| \begin{matrix}
i & j & k \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|=({{b}_{2}}{{c}_{3}}-{{b}_{3}}{{c}_{2}})i-({{b}_{1}}{{c}_{3}}-{{b}_{3}}{{c}_{1}})j+({{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}})k$
And
\[\vec{a}.(\vec{b}\times \vec{c})={{a}_{1}}({{b}_{2}}{{c}_{3}}-{{b}_{3}}{{c}_{2}})+{{a}_{2}}({{b}_{3}}{{c}_{1}}-{{b}_{1}}{{c}_{3}})+{{a}_{3}}({{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}})\]
$=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|$
Formula Used:\[\vec{a}.(\vec{b}\times \vec{c})={{a}_{1}}({{b}_{2}}{{c}_{3}}-{{b}_{3}}{{c}_{2}})+{{a}_{2}}({{b}_{3}}{{c}_{1}}-{{b}_{1}}{{c}_{3}})+{{a}_{3}}({{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}})\]
$=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|$
Complete step by step solution:Given that \[a=3i-2j+2k\],\[b=6i+4j-2k\] and \[c=3i-2j-4k\]
So, we have the values of the coefficients here,
$\begin{align}
& {{a}_{1}}=3,{{a}_{2}}=-2,{{a}_{1}}=2 \\
& {{b}_{1}}=6,{{b}_{2}}=4,{{b}_{3}}=-2 \\
& {{c}_{1}}=3,{{c}_{2}}=-2,{{c}_{3}}=-4 \\
\end{align}$
We are Putting these values in the formula,
\[\vec{a}.(\vec{b}\times \vec{c})=\left| \begin{matrix}
3 & -2 & 2 \\
6 & 4 & -2 \\
3 & -2 & -4 \\
\end{matrix} \right|\]
By solving this we will have
\[\vec{a}.(\vec{b}\times \vec{c})=3(-16-4)+2(-24+6)+2(-12-12)\]
\[\vec{a}.(\vec{b}\times \vec{c})=-144\]
Hence, we can see that we are getting the value not equal zero. So these vectors are not coplanar too.
Option ‘B’ is correct
Note: This question is only formula-based type question. So, while solving such question try to note the correct values of each coefficient so that while putting their value in the formula, you will get the correct answers. Sometimes students do mistakes while solving with minus in the determinants. So, take care of that too.
If \[a={{a}_{1}}i+{{a}_{2}}j+{{a}_{3}}k,b={{b}_{1}}i+{{b}_{2}}j+{{b}_{3}}k\] and \[c={{c}_{1}}i+{{c}_{2}}j+{{c}_{3}}k\], then
$\vec{b}\times \vec{c}=\left| \begin{matrix}
i & j & k \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|=({{b}_{2}}{{c}_{3}}-{{b}_{3}}{{c}_{2}})i-({{b}_{1}}{{c}_{3}}-{{b}_{3}}{{c}_{1}})j+({{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}})k$
And
\[\vec{a}.(\vec{b}\times \vec{c})={{a}_{1}}({{b}_{2}}{{c}_{3}}-{{b}_{3}}{{c}_{2}})+{{a}_{2}}({{b}_{3}}{{c}_{1}}-{{b}_{1}}{{c}_{3}})+{{a}_{3}}({{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}})\]
$=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|$
Formula Used:\[\vec{a}.(\vec{b}\times \vec{c})={{a}_{1}}({{b}_{2}}{{c}_{3}}-{{b}_{3}}{{c}_{2}})+{{a}_{2}}({{b}_{3}}{{c}_{1}}-{{b}_{1}}{{c}_{3}})+{{a}_{3}}({{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}})\]
$=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|$
Complete step by step solution:Given that \[a=3i-2j+2k\],\[b=6i+4j-2k\] and \[c=3i-2j-4k\]
So, we have the values of the coefficients here,
$\begin{align}
& {{a}_{1}}=3,{{a}_{2}}=-2,{{a}_{1}}=2 \\
& {{b}_{1}}=6,{{b}_{2}}=4,{{b}_{3}}=-2 \\
& {{c}_{1}}=3,{{c}_{2}}=-2,{{c}_{3}}=-4 \\
\end{align}$
We are Putting these values in the formula,
\[\vec{a}.(\vec{b}\times \vec{c})=\left| \begin{matrix}
3 & -2 & 2 \\
6 & 4 & -2 \\
3 & -2 & -4 \\
\end{matrix} \right|\]
By solving this we will have
\[\vec{a}.(\vec{b}\times \vec{c})=3(-16-4)+2(-24+6)+2(-12-12)\]
\[\vec{a}.(\vec{b}\times \vec{c})=-144\]
Hence, we can see that we are getting the value not equal zero. So these vectors are not coplanar too.
Option ‘B’ is correct
Note: This question is only formula-based type question. So, while solving such question try to note the correct values of each coefficient so that while putting their value in the formula, you will get the correct answers. Sometimes students do mistakes while solving with minus in the determinants. So, take care of that too.
Recently Updated Pages
Environmental Chemistry Chapter for JEE Main Chemistry

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Get P Block Elements for JEE Main 2025 with clear Explanations

Sets, Relations and Functions Chapter For JEE Main Maths

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Instantaneous Velocity - Formula based Examples for JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Advanced 2025 Notes
