
If \[a=3i-2j+2k\],\[b=6i+4j-2k\] and \[c=3i-2j-4k\],then $a.(b\times c)$is [Karnataka CET 2001]
A. $122$
B. $-144$
C. $120$
D. $-120$
Answer
218.7k+ views
Hint: Let $\vec{a},\vec{b}$and$\vec{c}$are three vectors. Then the scalar product of $\vec{a}$ and $(\vec{b}\times \vec{c})$ that is $a.(b\times c)$called as the triple product of $\vec{a},\vec{b}$and $\vec{c}$.
If \[a={{a}_{1}}i+{{a}_{2}}j+{{a}_{3}}k,b={{b}_{1}}i+{{b}_{2}}j+{{b}_{3}}k\] and \[c={{c}_{1}}i+{{c}_{2}}j+{{c}_{3}}k\], then
$\vec{b}\times \vec{c}=\left| \begin{matrix}
i & j & k \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|=({{b}_{2}}{{c}_{3}}-{{b}_{3}}{{c}_{2}})i-({{b}_{1}}{{c}_{3}}-{{b}_{3}}{{c}_{1}})j+({{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}})k$
And
\[\vec{a}.(\vec{b}\times \vec{c})={{a}_{1}}({{b}_{2}}{{c}_{3}}-{{b}_{3}}{{c}_{2}})+{{a}_{2}}({{b}_{3}}{{c}_{1}}-{{b}_{1}}{{c}_{3}})+{{a}_{3}}({{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}})\]
$=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|$
Formula Used:\[\vec{a}.(\vec{b}\times \vec{c})={{a}_{1}}({{b}_{2}}{{c}_{3}}-{{b}_{3}}{{c}_{2}})+{{a}_{2}}({{b}_{3}}{{c}_{1}}-{{b}_{1}}{{c}_{3}})+{{a}_{3}}({{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}})\]
$=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|$
Complete step by step solution:Given that \[a=3i-2j+2k\],\[b=6i+4j-2k\] and \[c=3i-2j-4k\]
So, we have the values of the coefficients here,
$\begin{align}
& {{a}_{1}}=3,{{a}_{2}}=-2,{{a}_{1}}=2 \\
& {{b}_{1}}=6,{{b}_{2}}=4,{{b}_{3}}=-2 \\
& {{c}_{1}}=3,{{c}_{2}}=-2,{{c}_{3}}=-4 \\
\end{align}$
We are Putting these values in the formula,
\[\vec{a}.(\vec{b}\times \vec{c})=\left| \begin{matrix}
3 & -2 & 2 \\
6 & 4 & -2 \\
3 & -2 & -4 \\
\end{matrix} \right|\]
By solving this we will have
\[\vec{a}.(\vec{b}\times \vec{c})=3(-16-4)+2(-24+6)+2(-12-12)\]
\[\vec{a}.(\vec{b}\times \vec{c})=-144\]
Hence, we can see that we are getting the value not equal zero. So these vectors are not coplanar too.
Option ‘B’ is correct
Note: This question is only formula-based type question. So, while solving such question try to note the correct values of each coefficient so that while putting their value in the formula, you will get the correct answers. Sometimes students do mistakes while solving with minus in the determinants. So, take care of that too.
If \[a={{a}_{1}}i+{{a}_{2}}j+{{a}_{3}}k,b={{b}_{1}}i+{{b}_{2}}j+{{b}_{3}}k\] and \[c={{c}_{1}}i+{{c}_{2}}j+{{c}_{3}}k\], then
$\vec{b}\times \vec{c}=\left| \begin{matrix}
i & j & k \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|=({{b}_{2}}{{c}_{3}}-{{b}_{3}}{{c}_{2}})i-({{b}_{1}}{{c}_{3}}-{{b}_{3}}{{c}_{1}})j+({{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}})k$
And
\[\vec{a}.(\vec{b}\times \vec{c})={{a}_{1}}({{b}_{2}}{{c}_{3}}-{{b}_{3}}{{c}_{2}})+{{a}_{2}}({{b}_{3}}{{c}_{1}}-{{b}_{1}}{{c}_{3}})+{{a}_{3}}({{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}})\]
$=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|$
Formula Used:\[\vec{a}.(\vec{b}\times \vec{c})={{a}_{1}}({{b}_{2}}{{c}_{3}}-{{b}_{3}}{{c}_{2}})+{{a}_{2}}({{b}_{3}}{{c}_{1}}-{{b}_{1}}{{c}_{3}})+{{a}_{3}}({{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}})\]
$=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|$
Complete step by step solution:Given that \[a=3i-2j+2k\],\[b=6i+4j-2k\] and \[c=3i-2j-4k\]
So, we have the values of the coefficients here,
$\begin{align}
& {{a}_{1}}=3,{{a}_{2}}=-2,{{a}_{1}}=2 \\
& {{b}_{1}}=6,{{b}_{2}}=4,{{b}_{3}}=-2 \\
& {{c}_{1}}=3,{{c}_{2}}=-2,{{c}_{3}}=-4 \\
\end{align}$
We are Putting these values in the formula,
\[\vec{a}.(\vec{b}\times \vec{c})=\left| \begin{matrix}
3 & -2 & 2 \\
6 & 4 & -2 \\
3 & -2 & -4 \\
\end{matrix} \right|\]
By solving this we will have
\[\vec{a}.(\vec{b}\times \vec{c})=3(-16-4)+2(-24+6)+2(-12-12)\]
\[\vec{a}.(\vec{b}\times \vec{c})=-144\]
Hence, we can see that we are getting the value not equal zero. So these vectors are not coplanar too.
Option ‘B’ is correct
Note: This question is only formula-based type question. So, while solving such question try to note the correct values of each coefficient so that while putting their value in the formula, you will get the correct answers. Sometimes students do mistakes while solving with minus in the determinants. So, take care of that too.
Recently Updated Pages
In a game two players A and B take turns in throwing class 12 maths JEE_Main

The number of ways in which 6 men and 5 women can dine class 12 maths JEE_Main

The area of an expanding rectangle is increasing at class 12 maths JEE_Main

If y xxx cdots infty then find dfracdydx A yxy 1 B class 12 maths JEE_Main

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

