
If \[a=3i-2j+2k\],\[b=6i+4j-2k\] and \[c=3i-2j-4k\],then $a.(b\times c)$is [Karnataka CET 2001]
A. $122$
B. $-144$
C. $120$
D. $-120$
Answer
233.1k+ views
Hint: Let $\vec{a},\vec{b}$and$\vec{c}$are three vectors. Then the scalar product of $\vec{a}$ and $(\vec{b}\times \vec{c})$ that is $a.(b\times c)$called as the triple product of $\vec{a},\vec{b}$and $\vec{c}$.
If \[a={{a}_{1}}i+{{a}_{2}}j+{{a}_{3}}k,b={{b}_{1}}i+{{b}_{2}}j+{{b}_{3}}k\] and \[c={{c}_{1}}i+{{c}_{2}}j+{{c}_{3}}k\], then
$\vec{b}\times \vec{c}=\left| \begin{matrix}
i & j & k \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|=({{b}_{2}}{{c}_{3}}-{{b}_{3}}{{c}_{2}})i-({{b}_{1}}{{c}_{3}}-{{b}_{3}}{{c}_{1}})j+({{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}})k$
And
\[\vec{a}.(\vec{b}\times \vec{c})={{a}_{1}}({{b}_{2}}{{c}_{3}}-{{b}_{3}}{{c}_{2}})+{{a}_{2}}({{b}_{3}}{{c}_{1}}-{{b}_{1}}{{c}_{3}})+{{a}_{3}}({{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}})\]
$=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|$
Formula Used:\[\vec{a}.(\vec{b}\times \vec{c})={{a}_{1}}({{b}_{2}}{{c}_{3}}-{{b}_{3}}{{c}_{2}})+{{a}_{2}}({{b}_{3}}{{c}_{1}}-{{b}_{1}}{{c}_{3}})+{{a}_{3}}({{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}})\]
$=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|$
Complete step by step solution:Given that \[a=3i-2j+2k\],\[b=6i+4j-2k\] and \[c=3i-2j-4k\]
So, we have the values of the coefficients here,
$\begin{align}
& {{a}_{1}}=3,{{a}_{2}}=-2,{{a}_{1}}=2 \\
& {{b}_{1}}=6,{{b}_{2}}=4,{{b}_{3}}=-2 \\
& {{c}_{1}}=3,{{c}_{2}}=-2,{{c}_{3}}=-4 \\
\end{align}$
We are Putting these values in the formula,
\[\vec{a}.(\vec{b}\times \vec{c})=\left| \begin{matrix}
3 & -2 & 2 \\
6 & 4 & -2 \\
3 & -2 & -4 \\
\end{matrix} \right|\]
By solving this we will have
\[\vec{a}.(\vec{b}\times \vec{c})=3(-16-4)+2(-24+6)+2(-12-12)\]
\[\vec{a}.(\vec{b}\times \vec{c})=-144\]
Hence, we can see that we are getting the value not equal zero. So these vectors are not coplanar too.
Option ‘B’ is correct
Note: This question is only formula-based type question. So, while solving such question try to note the correct values of each coefficient so that while putting their value in the formula, you will get the correct answers. Sometimes students do mistakes while solving with minus in the determinants. So, take care of that too.
If \[a={{a}_{1}}i+{{a}_{2}}j+{{a}_{3}}k,b={{b}_{1}}i+{{b}_{2}}j+{{b}_{3}}k\] and \[c={{c}_{1}}i+{{c}_{2}}j+{{c}_{3}}k\], then
$\vec{b}\times \vec{c}=\left| \begin{matrix}
i & j & k \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|=({{b}_{2}}{{c}_{3}}-{{b}_{3}}{{c}_{2}})i-({{b}_{1}}{{c}_{3}}-{{b}_{3}}{{c}_{1}})j+({{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}})k$
And
\[\vec{a}.(\vec{b}\times \vec{c})={{a}_{1}}({{b}_{2}}{{c}_{3}}-{{b}_{3}}{{c}_{2}})+{{a}_{2}}({{b}_{3}}{{c}_{1}}-{{b}_{1}}{{c}_{3}})+{{a}_{3}}({{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}})\]
$=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|$
Formula Used:\[\vec{a}.(\vec{b}\times \vec{c})={{a}_{1}}({{b}_{2}}{{c}_{3}}-{{b}_{3}}{{c}_{2}})+{{a}_{2}}({{b}_{3}}{{c}_{1}}-{{b}_{1}}{{c}_{3}})+{{a}_{3}}({{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}})\]
$=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|$
Complete step by step solution:Given that \[a=3i-2j+2k\],\[b=6i+4j-2k\] and \[c=3i-2j-4k\]
So, we have the values of the coefficients here,
$\begin{align}
& {{a}_{1}}=3,{{a}_{2}}=-2,{{a}_{1}}=2 \\
& {{b}_{1}}=6,{{b}_{2}}=4,{{b}_{3}}=-2 \\
& {{c}_{1}}=3,{{c}_{2}}=-2,{{c}_{3}}=-4 \\
\end{align}$
We are Putting these values in the formula,
\[\vec{a}.(\vec{b}\times \vec{c})=\left| \begin{matrix}
3 & -2 & 2 \\
6 & 4 & -2 \\
3 & -2 & -4 \\
\end{matrix} \right|\]
By solving this we will have
\[\vec{a}.(\vec{b}\times \vec{c})=3(-16-4)+2(-24+6)+2(-12-12)\]
\[\vec{a}.(\vec{b}\times \vec{c})=-144\]
Hence, we can see that we are getting the value not equal zero. So these vectors are not coplanar too.
Option ‘B’ is correct
Note: This question is only formula-based type question. So, while solving such question try to note the correct values of each coefficient so that while putting their value in the formula, you will get the correct answers. Sometimes students do mistakes while solving with minus in the determinants. So, take care of that too.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

