
If a linear inequality in complex number a+ib < c+id is meaningful if
A). $$a^{2}+b^{2}=0$$
B). $$b^{2}+c^{2}=0$$
C). $$a^{2}+c^{2}=0$$
D). $$b^{2}+d^{2}=0$$
Answer
232.8k+ views
Hint: In this question it is given that we have to find the condition for which the given condition a+ib < c+id is meaningful. So to find the solution we need to know any two complex numbers cannot be compared as there is no such concept. So by using this concept we have to solve the problem.
Complete step-by-step solution:
Here the given condition is a+ib < c+id.
As we know that Imaginary numbers cannot be compared.
So the condition a+ib < c+id to be meaningful, if and only if they are real numbers. Which is possible when their imaginary parts are zero.
i.e. b and d must be zero, b=0, d=0.
Therefore we can say that $$b^{2}+d^{2}=0$$.
Hence the correct option is option D.
Note: While solving this type of question you need to know that complex number is a number that can be expressed in the form a + bi, where a and b are real numbers, and i represents the imaginary unit, satisfying the equation $$i^{2}$$ = −1. Because no real number satisfies this equation, it is called an imaginary number. For the complex number a + bi, a is called the real part, and b is called the imaginary part. Also we can compare two complex numbers for equality. That is, we can assert or question if two complex numbers $$z_{1},z_{2}$$ are equal, i.e, $$z_{1}= z_{2}$$.
But there isn’t an ordering on complex numbers which follows all the rules we would expect of an ordering. So we can’t say $$z_{1} >z_{2}$$, $$z_{1} < z_{2}$$ or $$z_{1}\leq z_{2}$$ in sensible manner.
Complete step-by-step solution:
Here the given condition is a+ib < c+id.
As we know that Imaginary numbers cannot be compared.
So the condition a+ib < c+id to be meaningful, if and only if they are real numbers. Which is possible when their imaginary parts are zero.
i.e. b and d must be zero, b=0, d=0.
Therefore we can say that $$b^{2}+d^{2}=0$$.
Hence the correct option is option D.
Note: While solving this type of question you need to know that complex number is a number that can be expressed in the form a + bi, where a and b are real numbers, and i represents the imaginary unit, satisfying the equation $$i^{2}$$ = −1. Because no real number satisfies this equation, it is called an imaginary number. For the complex number a + bi, a is called the real part, and b is called the imaginary part. Also we can compare two complex numbers for equality. That is, we can assert or question if two complex numbers $$z_{1},z_{2}$$ are equal, i.e, $$z_{1}= z_{2}$$.
But there isn’t an ordering on complex numbers which follows all the rules we would expect of an ordering. So we can’t say $$z_{1} >z_{2}$$, $$z_{1} < z_{2}$$ or $$z_{1}\leq z_{2}$$ in sensible manner.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

