If a graph is plotted between ${T^2}$ and ${r^3}$ for a planet, then its slope will be (where ${M_S}$ is the mass of the sun).
A) $\dfrac{{4{\pi ^2}}}{{{M_S}}}$
B) $\dfrac{{G{M_S}}}{{4\pi }}$
C) $4\pi G{M_S}$
D) $G{M_S}$
Answer
Verified
118.5k+ views
Hint: Analyze the question by trying to find a relation between ${T^2}$ and ${r^3}$ following the motion of planets around the sun in their orbits. One of Keppler’s laws justifies such a relation. Here, $T$ is the time period of revolution of the planet around the Sun and $r$ is the radius of its orbit, i.e., distance from the Sun.
Complete step by step solution:
The three laws of Kepler about planetary motion are:
The Law of Ellipses: The path of the planets about the sun is elliptical, with the centre of the sun being located at one focus.
The Law of Equal Areas: An imaginary line drawn from the centre of the sun to the centre of the planet will sweep out equal areas in equal intervals of time.
The Law of Harmonies: The ratio of the squares of the periods of any two planets is equal to the ratio of the cubes of their average distances from the sun.
Since,
$T = \dfrac{{2\pi }}{\omega }$ where, $\omega$ is the angular velocity of the body in circular motion
$v = \omega r$
$\Rightarrow \omega = \dfrac{v}{r}$
where, $v$ is the linear velocity of the body and $r$ is the radius of revolution
The orbital velocity of a planet revolving around the sun is given as
$\Rightarrow v = \sqrt {\dfrac{{G{M_S}}}{r}}$
Now,
$\Rightarrow T = \dfrac{{2\pi r}}{v}$
We put $v = \sqrt {\dfrac{{G{M_S}}}{r}}$ and get-
$\Rightarrow T = \dfrac{{2\pi r}}{{\sqrt {\dfrac{{G{M_S}}}{r}} }}$
where,
${M_s}$ is mass of Sun as given
$G$ is the gravitational constant i.e., $6.673 \times {10^{ - 11}}N{m^2}k{g^{ - 2}}$
Squaring both sides,
$\Rightarrow {T^2} = \dfrac{{4{\pi ^2}{r^3}}}{{G{M_S}}}$
Therefore, the slope of the graph would be $\dfrac{{4{\pi ^2}}}{{{M_S}}}$ and it would be a straight-line graph as ${T^2} \propto {r^3}$
The correct answer is [A], $\dfrac{{4{\pi ^2}}}{{{M_S}}}$.
Note: Orbital velocity is the velocity at which a body revolves around another body in space. The orbital velocity is directly proportional to the mass of the body for which it is being calculated and inversely proportional to the radius.
Complete step by step solution:
The three laws of Kepler about planetary motion are:
The Law of Ellipses: The path of the planets about the sun is elliptical, with the centre of the sun being located at one focus.
The Law of Equal Areas: An imaginary line drawn from the centre of the sun to the centre of the planet will sweep out equal areas in equal intervals of time.
The Law of Harmonies: The ratio of the squares of the periods of any two planets is equal to the ratio of the cubes of their average distances from the sun.
Since,
$T = \dfrac{{2\pi }}{\omega }$ where, $\omega$ is the angular velocity of the body in circular motion
$v = \omega r$
$\Rightarrow \omega = \dfrac{v}{r}$
where, $v$ is the linear velocity of the body and $r$ is the radius of revolution
The orbital velocity of a planet revolving around the sun is given as
$\Rightarrow v = \sqrt {\dfrac{{G{M_S}}}{r}}$
Now,
$\Rightarrow T = \dfrac{{2\pi r}}{v}$
We put $v = \sqrt {\dfrac{{G{M_S}}}{r}}$ and get-
$\Rightarrow T = \dfrac{{2\pi r}}{{\sqrt {\dfrac{{G{M_S}}}{r}} }}$
where,
${M_s}$ is mass of Sun as given
$G$ is the gravitational constant i.e., $6.673 \times {10^{ - 11}}N{m^2}k{g^{ - 2}}$
Squaring both sides,
$\Rightarrow {T^2} = \dfrac{{4{\pi ^2}{r^3}}}{{G{M_S}}}$
Therefore, the slope of the graph would be $\dfrac{{4{\pi ^2}}}{{{M_S}}}$ and it would be a straight-line graph as ${T^2} \propto {r^3}$
The correct answer is [A], $\dfrac{{4{\pi ^2}}}{{{M_S}}}$.
Note: Orbital velocity is the velocity at which a body revolves around another body in space. The orbital velocity is directly proportional to the mass of the body for which it is being calculated and inversely proportional to the radius.
Recently Updated Pages
JEE Main 2025: Application Form, Exam Dates, Eligibility, and More
Algebraic Formula
Difference Between Constants and Variables: JEE Main 2024
Arithmetic Mean Formula - Explanation, Calculation, Solved Examples, and FAQs
Difference Between Square and Rhombuss: JEE Main 2024
Height and Distance - Definition, Pythagorean Theorem, Formula, Calculation, Methods & Solved Examples
Trending doubts
Physics Average Value and RMS Value JEE Main 2025
Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
Electron Gain Enthalpy and Electron Affinity for JEE
Collision - Important Concepts and Tips for JEE
Clemmenson and Wolff Kishner Reductions for JEE
JEE Main Chemistry Exam Pattern 2025
Other Pages
NCERT Solutions for Class 11 Physics Chapter 4 Laws of Motion
NCERT Solutions for Class 11 Physics Chapter 3 Motion In A Plane
NCERT Solutions for Class 11 Physics Chapter 13 Oscillations
JEE Advanced 2025 Revision Notes for Physics on Modern Physics
The diagram given shows how the net interaction force class 11 physics JEE_Main
An Lshaped glass tube is just immersed in flowing water class 11 physics JEE_Main