
If a function is given by \[f\left( x \right)={{\sin }^{-1}}\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right)\text{ then }{{f}^{'}}\left( -\dfrac{1}{2} \right)\]
(a) \[\dfrac{-\sqrt{3}}{2}{{\log }_{e}}\sqrt{3}\]
(b) \[\dfrac{\sqrt{3}}{2}{{\log }_{e}}\sqrt{3}\]
(c) \[-\sqrt{3}{{\log }_{e}}3\]
(d) \[\sqrt{3}{{\log }_{e}}3\]
Answer
232.8k+ views
Hint: In order to solve this question, we will first find the derivative of f(x) and then we will put the value of x as \[\dfrac{-1}{2}\]. To find the derivative of f(x), we should know about a few derivative formulas like chain rule, quotient rule given by - \[\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={{f}^{'}}\left( g\left( x \right) \right).{{g}^{'}}\left( x \right),\dfrac{d}{dx}{{\sin }^{-1}}x=\dfrac{1}{\sqrt{1-{{x}^{2}}}}\text{,}\dfrac{d}{dx}\left( {{a}^{x}} \right)={{a}^{x}}\log a\text{ and }\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}\]By using these formulas we can solve this question.
Complete step-by-step answer:
In this question, we have been asked to find the value of \[{{f}^{'}}\left( -\dfrac{1}{2} \right)\] where \[f\left( x \right)={{\sin }^{-1}}\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right)\]. To solve this question, we should know that the derivatives of \[f\left( g\left( x \right) \right),{{\sin }^{-1}}x,{{a}^{x}},\dfrac{u}{v}\] type function is given by \[\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={{f}^{'}}\left( g\left( x \right) \right).{{g}^{'}}\left( x \right),\dfrac{d}{dx}{{\sin }^{-1}}x=\dfrac{1}{\sqrt{1-{{x}^{2}}}}\text{,}\dfrac{d}{dx}\left( {{a}^{x}} \right)={{a}^{x}}\log a\text{ and }\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}\]
Now, to solve this question, we will first find the derivative of \[{{\sin }^{-1}}\] then \[\dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}}\] and then that of \[{{3}^{x}}\text{ and }{{9}^{x}}\]. So, we can write
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{d}{dx}\left( {{\sin }^{-1}}\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right) \right)\]
Here, we can see that the function is of the form f (g (x)) where \[g\left( x \right)=\dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}}\]. So, we can apply the chain rule. Now, we know that \[\dfrac{d}{dx}{{\sin }^{-1}}x=\dfrac{1}{\sqrt{1-{{x}^{2}}}}\]. So, for \[x=\dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}}\], we get,
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{1}{\sqrt{1-{{\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right)}^{2}}}}.\dfrac{d}{dx}\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right)\]
Now, we will simplify it. So, we get,
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{1}{\sqrt{\dfrac{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}{{{\left( 1+{{9}^{x}} \right)}^{2}}}}}.\dfrac{d}{dx}\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right)\]
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}}}{\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}.\dfrac{d}{dx}\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right)\]
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{1+{{9}^{x}}}{\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}.\dfrac{d}{dx}\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right)\]
Now, we know using quotient rule that \[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}\]. So, we can write \[\dfrac{d}{dx}\left( f\left( x \right) \right)\] for \[u=2\times {{3}^{x}}\text{ and }v=1+{{9}^{x}}\], we get,
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{\left( 1+{{9}^{x}} \right)}{\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}.\dfrac{\left( 1+{{9}^{x}} \right)\dfrac{d}{dx}\left( 2\times {{3}^{x}} \right)-\left( 2\times {{3}^{x}} \right)\dfrac{d}{dx}\left( 1+{{9}^{x}} \right)}{{{\left( 1+{{9}^{x}} \right)}^{2}}}\]
Now, we know that \[\dfrac{d}{dx}{{a}^{x}}={{a}^{x}}\log a\]. So, we can write \[\dfrac{d}{dx}\left( 2\times {{3}^{x}} \right)=2\times {{3}^{x}}\log 3\] and \[\dfrac{d}{dx}\left( 1+{{9}^{x}} \right)={{9}^{x}}\log 9\]. So, we get,
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{\left( 1+{{9}^{x}} \right)}{\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}.\dfrac{\left( 1+{{9}^{x}} \right)\left( 2\times {{3}^{x}}\times \log 3 \right)-\left( 2\times {{3}^{x}} \right)\left( {{9}^{x}}\log 9 \right)}{{{\left( 1+{{9}^{x}} \right)}^{2}}}\]
Now, we will simplify it further, we get,
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{2\times {{3}^{x}}\times \log 3+{{9}^{x}}\times 2\times {{3}^{x}}\log 3-2\times {{3}^{x}}\times {{9}^{x}}\log 9}{\left( 1+{{9}^{x}} \right)\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}\]
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{2\times {{3}^{x}}\times \log 3+{{9}^{x}}\times 2\times {{3}^{x}}\log 3-2\times {{3}^{x}}\times {{9}^{x}}\log {{3}^{2}}}{\left( 1+{{9}^{x}} \right)\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}\]
Now, we know that \[\log {{a}^{n}}=n\log a\]. So, we can write \[\log {{3}^{2}}=2\log 3\]. So, we get,
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{2\times {{3}^{x}}\times \log 3+{{9}^{x}}\times 2\times {{3}^{x}}\log 3-4\times {{3}^{x}}\times {{9}^{x}}\log 3}{\left( 1+{{9}^{x}} \right)\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}\]
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{2\times {{3}^{x}}\times \log 3+\left( {{3}^{x}}\times {{9}^{x}}\log 3 \right)\times \left( 2-4 \right)}{\left( 1+{{9}^{x}} \right)\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}\]
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{2\times {{3}^{x}}\times \log 3-2\times {{3}^{x}}\times {{9}^{x}}\log 3}{\left( 1+{{9}^{x}} \right)\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}\]
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{2\times {{3}^{x}}\times \log 3\left( 1-{{9}^{x}} \right)}{\left( 1+{{9}^{x}} \right)\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}\]
We know that \[\dfrac{d}{dx}\left( f\left( x \right) \right)={{f}^{'}}\left( x \right)\]. So, we can write,
\[{{f}^{'}}\left( x \right)=\dfrac{2\times {{3}^{x}}\times \left( 1-{{9}^{x}} \right)\times \log 3}{\left( 1+{{9}^{x}} \right)\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}\]
Now, we will put \[x=\dfrac{-1}{2}\] to get the value of \[{{f}^{'}}\left( \dfrac{-1}{2} \right)\]. So, we get,
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{2\times {{3}^{\dfrac{-1}{2}}}\times \left( 1-{{9}^{\dfrac{-1}{2}}} \right)\times \log 3}{\left( 1+{{9}^{\dfrac{-1}{2}}} \right)\sqrt{{{\left( 1+{{9}^{\dfrac{-1}{2}}} \right)}^{2}}-{{\left( 2\times {{3}^{\dfrac{-1}{2}}} \right)}^{2}}}}\]
Now, we know that \[\sqrt{9}=3\]. So, we get,
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{\dfrac{2}{\sqrt{3}}\left( 1-\dfrac{1}{3} \right)\log 3}{\left( 1+\dfrac{1}{3} \right)\sqrt{{{\left( 1+\dfrac{1}{3} \right)}^{2}}-\dfrac{4}{3}}}\]
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{4\log 3}{3\sqrt{3}\left[ \dfrac{4}{3}\sqrt{\dfrac{16}{9}-\dfrac{4}{3}} \right]}\]
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{4\log 3}{3\sqrt{3}\left[ \dfrac{4}{3}\sqrt{\dfrac{16-12}{9}} \right]}\]
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{4\log 3}{3\sqrt{3}\times \dfrac{4}{3}\times \dfrac{2}{3}}\]
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{4\times 3\times 3\times \log 3}{4\times 2\times 3\sqrt{3}}\]
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{\sqrt{3}}{2}\log 3\]
Now, we know that \[3={{\left( \sqrt{3} \right)}^{2}}\]. So, we can write
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{\sqrt{3}}{2}\log {{\left( \sqrt{3} \right)}^{2}}\]
And we know that \[\log {{m}^{n}}=n\log m\]. So, we get,
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{\sqrt{3}}{2}\left( 2\log \sqrt{3} \right)\]
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\sqrt{3}\log \sqrt{3}\]
Hence, we can say that, for \[f\left( x \right)={{\sin }^{-1}}\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right)\], we get \[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\sqrt{3}{{\log }_{e}}\sqrt{3}\]
Therefore, option (d) is the right answer.
Note: While solving this question, there are high chances of calculation mistakes because it contains a lot of calculations. Also, we need to remember that derivative of \[{{\sin }^{-1}}x=\dfrac{1}{\sqrt{1-{{x}^{2}}}}\]. Sometimes in a hurry, we end up writing it as \[\dfrac{1}{\sqrt{{{x}^{2}}-1}}\text{ or }\dfrac{-1}{\sqrt{1-{{x}^{2}}}}\] which is wrong. So, we have to remember a few standard derivatives and we have to be very careful while solving the question.
Complete step-by-step answer:
In this question, we have been asked to find the value of \[{{f}^{'}}\left( -\dfrac{1}{2} \right)\] where \[f\left( x \right)={{\sin }^{-1}}\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right)\]. To solve this question, we should know that the derivatives of \[f\left( g\left( x \right) \right),{{\sin }^{-1}}x,{{a}^{x}},\dfrac{u}{v}\] type function is given by \[\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={{f}^{'}}\left( g\left( x \right) \right).{{g}^{'}}\left( x \right),\dfrac{d}{dx}{{\sin }^{-1}}x=\dfrac{1}{\sqrt{1-{{x}^{2}}}}\text{,}\dfrac{d}{dx}\left( {{a}^{x}} \right)={{a}^{x}}\log a\text{ and }\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}\]
Now, to solve this question, we will first find the derivative of \[{{\sin }^{-1}}\] then \[\dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}}\] and then that of \[{{3}^{x}}\text{ and }{{9}^{x}}\]. So, we can write
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{d}{dx}\left( {{\sin }^{-1}}\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right) \right)\]
Here, we can see that the function is of the form f (g (x)) where \[g\left( x \right)=\dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}}\]. So, we can apply the chain rule. Now, we know that \[\dfrac{d}{dx}{{\sin }^{-1}}x=\dfrac{1}{\sqrt{1-{{x}^{2}}}}\]. So, for \[x=\dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}}\], we get,
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{1}{\sqrt{1-{{\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right)}^{2}}}}.\dfrac{d}{dx}\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right)\]
Now, we will simplify it. So, we get,
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{1}{\sqrt{\dfrac{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}{{{\left( 1+{{9}^{x}} \right)}^{2}}}}}.\dfrac{d}{dx}\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right)\]
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}}}{\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}.\dfrac{d}{dx}\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right)\]
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{1+{{9}^{x}}}{\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}.\dfrac{d}{dx}\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right)\]
Now, we know using quotient rule that \[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}\]. So, we can write \[\dfrac{d}{dx}\left( f\left( x \right) \right)\] for \[u=2\times {{3}^{x}}\text{ and }v=1+{{9}^{x}}\], we get,
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{\left( 1+{{9}^{x}} \right)}{\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}.\dfrac{\left( 1+{{9}^{x}} \right)\dfrac{d}{dx}\left( 2\times {{3}^{x}} \right)-\left( 2\times {{3}^{x}} \right)\dfrac{d}{dx}\left( 1+{{9}^{x}} \right)}{{{\left( 1+{{9}^{x}} \right)}^{2}}}\]
Now, we know that \[\dfrac{d}{dx}{{a}^{x}}={{a}^{x}}\log a\]. So, we can write \[\dfrac{d}{dx}\left( 2\times {{3}^{x}} \right)=2\times {{3}^{x}}\log 3\] and \[\dfrac{d}{dx}\left( 1+{{9}^{x}} \right)={{9}^{x}}\log 9\]. So, we get,
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{\left( 1+{{9}^{x}} \right)}{\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}.\dfrac{\left( 1+{{9}^{x}} \right)\left( 2\times {{3}^{x}}\times \log 3 \right)-\left( 2\times {{3}^{x}} \right)\left( {{9}^{x}}\log 9 \right)}{{{\left( 1+{{9}^{x}} \right)}^{2}}}\]
Now, we will simplify it further, we get,
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{2\times {{3}^{x}}\times \log 3+{{9}^{x}}\times 2\times {{3}^{x}}\log 3-2\times {{3}^{x}}\times {{9}^{x}}\log 9}{\left( 1+{{9}^{x}} \right)\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}\]
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{2\times {{3}^{x}}\times \log 3+{{9}^{x}}\times 2\times {{3}^{x}}\log 3-2\times {{3}^{x}}\times {{9}^{x}}\log {{3}^{2}}}{\left( 1+{{9}^{x}} \right)\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}\]
Now, we know that \[\log {{a}^{n}}=n\log a\]. So, we can write \[\log {{3}^{2}}=2\log 3\]. So, we get,
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{2\times {{3}^{x}}\times \log 3+{{9}^{x}}\times 2\times {{3}^{x}}\log 3-4\times {{3}^{x}}\times {{9}^{x}}\log 3}{\left( 1+{{9}^{x}} \right)\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}\]
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{2\times {{3}^{x}}\times \log 3+\left( {{3}^{x}}\times {{9}^{x}}\log 3 \right)\times \left( 2-4 \right)}{\left( 1+{{9}^{x}} \right)\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}\]
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{2\times {{3}^{x}}\times \log 3-2\times {{3}^{x}}\times {{9}^{x}}\log 3}{\left( 1+{{9}^{x}} \right)\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}\]
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{2\times {{3}^{x}}\times \log 3\left( 1-{{9}^{x}} \right)}{\left( 1+{{9}^{x}} \right)\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}\]
We know that \[\dfrac{d}{dx}\left( f\left( x \right) \right)={{f}^{'}}\left( x \right)\]. So, we can write,
\[{{f}^{'}}\left( x \right)=\dfrac{2\times {{3}^{x}}\times \left( 1-{{9}^{x}} \right)\times \log 3}{\left( 1+{{9}^{x}} \right)\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}\]
Now, we will put \[x=\dfrac{-1}{2}\] to get the value of \[{{f}^{'}}\left( \dfrac{-1}{2} \right)\]. So, we get,
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{2\times {{3}^{\dfrac{-1}{2}}}\times \left( 1-{{9}^{\dfrac{-1}{2}}} \right)\times \log 3}{\left( 1+{{9}^{\dfrac{-1}{2}}} \right)\sqrt{{{\left( 1+{{9}^{\dfrac{-1}{2}}} \right)}^{2}}-{{\left( 2\times {{3}^{\dfrac{-1}{2}}} \right)}^{2}}}}\]
Now, we know that \[\sqrt{9}=3\]. So, we get,
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{\dfrac{2}{\sqrt{3}}\left( 1-\dfrac{1}{3} \right)\log 3}{\left( 1+\dfrac{1}{3} \right)\sqrt{{{\left( 1+\dfrac{1}{3} \right)}^{2}}-\dfrac{4}{3}}}\]
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{4\log 3}{3\sqrt{3}\left[ \dfrac{4}{3}\sqrt{\dfrac{16}{9}-\dfrac{4}{3}} \right]}\]
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{4\log 3}{3\sqrt{3}\left[ \dfrac{4}{3}\sqrt{\dfrac{16-12}{9}} \right]}\]
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{4\log 3}{3\sqrt{3}\times \dfrac{4}{3}\times \dfrac{2}{3}}\]
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{4\times 3\times 3\times \log 3}{4\times 2\times 3\sqrt{3}}\]
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{\sqrt{3}}{2}\log 3\]
Now, we know that \[3={{\left( \sqrt{3} \right)}^{2}}\]. So, we can write
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{\sqrt{3}}{2}\log {{\left( \sqrt{3} \right)}^{2}}\]
And we know that \[\log {{m}^{n}}=n\log m\]. So, we get,
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{\sqrt{3}}{2}\left( 2\log \sqrt{3} \right)\]
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\sqrt{3}\log \sqrt{3}\]
Hence, we can say that, for \[f\left( x \right)={{\sin }^{-1}}\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right)\], we get \[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\sqrt{3}{{\log }_{e}}\sqrt{3}\]
Therefore, option (d) is the right answer.
Note: While solving this question, there are high chances of calculation mistakes because it contains a lot of calculations. Also, we need to remember that derivative of \[{{\sin }^{-1}}x=\dfrac{1}{\sqrt{1-{{x}^{2}}}}\]. Sometimes in a hurry, we end up writing it as \[\dfrac{1}{\sqrt{{{x}^{2}}-1}}\text{ or }\dfrac{-1}{\sqrt{1-{{x}^{2}}}}\] which is wrong. So, we have to remember a few standard derivatives and we have to be very careful while solving the question.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

