
If a function is given by \[f\left( x \right)={{\sin }^{-1}}\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right)\text{ then }{{f}^{'}}\left( -\dfrac{1}{2} \right)\]
(a) \[\dfrac{-\sqrt{3}}{2}{{\log }_{e}}\sqrt{3}\]
(b) \[\dfrac{\sqrt{3}}{2}{{\log }_{e}}\sqrt{3}\]
(c) \[-\sqrt{3}{{\log }_{e}}3\]
(d) \[\sqrt{3}{{\log }_{e}}3\]
Answer
126.3k+ views
Hint: In order to solve this question, we will first find the derivative of f(x) and then we will put the value of x as \[\dfrac{-1}{2}\]. To find the derivative of f(x), we should know about a few derivative formulas like chain rule, quotient rule given by - \[\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={{f}^{'}}\left( g\left( x \right) \right).{{g}^{'}}\left( x \right),\dfrac{d}{dx}{{\sin }^{-1}}x=\dfrac{1}{\sqrt{1-{{x}^{2}}}}\text{,}\dfrac{d}{dx}\left( {{a}^{x}} \right)={{a}^{x}}\log a\text{ and }\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}\]By using these formulas we can solve this question.
Complete step-by-step answer:
In this question, we have been asked to find the value of \[{{f}^{'}}\left( -\dfrac{1}{2} \right)\] where \[f\left( x \right)={{\sin }^{-1}}\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right)\]. To solve this question, we should know that the derivatives of \[f\left( g\left( x \right) \right),{{\sin }^{-1}}x,{{a}^{x}},\dfrac{u}{v}\] type function is given by \[\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={{f}^{'}}\left( g\left( x \right) \right).{{g}^{'}}\left( x \right),\dfrac{d}{dx}{{\sin }^{-1}}x=\dfrac{1}{\sqrt{1-{{x}^{2}}}}\text{,}\dfrac{d}{dx}\left( {{a}^{x}} \right)={{a}^{x}}\log a\text{ and }\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}\]
Now, to solve this question, we will first find the derivative of \[{{\sin }^{-1}}\] then \[\dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}}\] and then that of \[{{3}^{x}}\text{ and }{{9}^{x}}\]. So, we can write
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{d}{dx}\left( {{\sin }^{-1}}\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right) \right)\]
Here, we can see that the function is of the form f (g (x)) where \[g\left( x \right)=\dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}}\]. So, we can apply the chain rule. Now, we know that \[\dfrac{d}{dx}{{\sin }^{-1}}x=\dfrac{1}{\sqrt{1-{{x}^{2}}}}\]. So, for \[x=\dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}}\], we get,
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{1}{\sqrt{1-{{\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right)}^{2}}}}.\dfrac{d}{dx}\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right)\]
Now, we will simplify it. So, we get,
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{1}{\sqrt{\dfrac{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}{{{\left( 1+{{9}^{x}} \right)}^{2}}}}}.\dfrac{d}{dx}\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right)\]
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}}}{\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}.\dfrac{d}{dx}\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right)\]
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{1+{{9}^{x}}}{\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}.\dfrac{d}{dx}\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right)\]
Now, we know using quotient rule that \[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}\]. So, we can write \[\dfrac{d}{dx}\left( f\left( x \right) \right)\] for \[u=2\times {{3}^{x}}\text{ and }v=1+{{9}^{x}}\], we get,
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{\left( 1+{{9}^{x}} \right)}{\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}.\dfrac{\left( 1+{{9}^{x}} \right)\dfrac{d}{dx}\left( 2\times {{3}^{x}} \right)-\left( 2\times {{3}^{x}} \right)\dfrac{d}{dx}\left( 1+{{9}^{x}} \right)}{{{\left( 1+{{9}^{x}} \right)}^{2}}}\]
Now, we know that \[\dfrac{d}{dx}{{a}^{x}}={{a}^{x}}\log a\]. So, we can write \[\dfrac{d}{dx}\left( 2\times {{3}^{x}} \right)=2\times {{3}^{x}}\log 3\] and \[\dfrac{d}{dx}\left( 1+{{9}^{x}} \right)={{9}^{x}}\log 9\]. So, we get,
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{\left( 1+{{9}^{x}} \right)}{\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}.\dfrac{\left( 1+{{9}^{x}} \right)\left( 2\times {{3}^{x}}\times \log 3 \right)-\left( 2\times {{3}^{x}} \right)\left( {{9}^{x}}\log 9 \right)}{{{\left( 1+{{9}^{x}} \right)}^{2}}}\]
Now, we will simplify it further, we get,
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{2\times {{3}^{x}}\times \log 3+{{9}^{x}}\times 2\times {{3}^{x}}\log 3-2\times {{3}^{x}}\times {{9}^{x}}\log 9}{\left( 1+{{9}^{x}} \right)\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}\]
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{2\times {{3}^{x}}\times \log 3+{{9}^{x}}\times 2\times {{3}^{x}}\log 3-2\times {{3}^{x}}\times {{9}^{x}}\log {{3}^{2}}}{\left( 1+{{9}^{x}} \right)\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}\]
Now, we know that \[\log {{a}^{n}}=n\log a\]. So, we can write \[\log {{3}^{2}}=2\log 3\]. So, we get,
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{2\times {{3}^{x}}\times \log 3+{{9}^{x}}\times 2\times {{3}^{x}}\log 3-4\times {{3}^{x}}\times {{9}^{x}}\log 3}{\left( 1+{{9}^{x}} \right)\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}\]
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{2\times {{3}^{x}}\times \log 3+\left( {{3}^{x}}\times {{9}^{x}}\log 3 \right)\times \left( 2-4 \right)}{\left( 1+{{9}^{x}} \right)\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}\]
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{2\times {{3}^{x}}\times \log 3-2\times {{3}^{x}}\times {{9}^{x}}\log 3}{\left( 1+{{9}^{x}} \right)\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}\]
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{2\times {{3}^{x}}\times \log 3\left( 1-{{9}^{x}} \right)}{\left( 1+{{9}^{x}} \right)\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}\]
We know that \[\dfrac{d}{dx}\left( f\left( x \right) \right)={{f}^{'}}\left( x \right)\]. So, we can write,
\[{{f}^{'}}\left( x \right)=\dfrac{2\times {{3}^{x}}\times \left( 1-{{9}^{x}} \right)\times \log 3}{\left( 1+{{9}^{x}} \right)\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}\]
Now, we will put \[x=\dfrac{-1}{2}\] to get the value of \[{{f}^{'}}\left( \dfrac{-1}{2} \right)\]. So, we get,
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{2\times {{3}^{\dfrac{-1}{2}}}\times \left( 1-{{9}^{\dfrac{-1}{2}}} \right)\times \log 3}{\left( 1+{{9}^{\dfrac{-1}{2}}} \right)\sqrt{{{\left( 1+{{9}^{\dfrac{-1}{2}}} \right)}^{2}}-{{\left( 2\times {{3}^{\dfrac{-1}{2}}} \right)}^{2}}}}\]
Now, we know that \[\sqrt{9}=3\]. So, we get,
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{\dfrac{2}{\sqrt{3}}\left( 1-\dfrac{1}{3} \right)\log 3}{\left( 1+\dfrac{1}{3} \right)\sqrt{{{\left( 1+\dfrac{1}{3} \right)}^{2}}-\dfrac{4}{3}}}\]
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{4\log 3}{3\sqrt{3}\left[ \dfrac{4}{3}\sqrt{\dfrac{16}{9}-\dfrac{4}{3}} \right]}\]
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{4\log 3}{3\sqrt{3}\left[ \dfrac{4}{3}\sqrt{\dfrac{16-12}{9}} \right]}\]
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{4\log 3}{3\sqrt{3}\times \dfrac{4}{3}\times \dfrac{2}{3}}\]
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{4\times 3\times 3\times \log 3}{4\times 2\times 3\sqrt{3}}\]
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{\sqrt{3}}{2}\log 3\]
Now, we know that \[3={{\left( \sqrt{3} \right)}^{2}}\]. So, we can write
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{\sqrt{3}}{2}\log {{\left( \sqrt{3} \right)}^{2}}\]
And we know that \[\log {{m}^{n}}=n\log m\]. So, we get,
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{\sqrt{3}}{2}\left( 2\log \sqrt{3} \right)\]
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\sqrt{3}\log \sqrt{3}\]
Hence, we can say that, for \[f\left( x \right)={{\sin }^{-1}}\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right)\], we get \[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\sqrt{3}{{\log }_{e}}\sqrt{3}\]
Therefore, option (d) is the right answer.
Note: While solving this question, there are high chances of calculation mistakes because it contains a lot of calculations. Also, we need to remember that derivative of \[{{\sin }^{-1}}x=\dfrac{1}{\sqrt{1-{{x}^{2}}}}\]. Sometimes in a hurry, we end up writing it as \[\dfrac{1}{\sqrt{{{x}^{2}}-1}}\text{ or }\dfrac{-1}{\sqrt{1-{{x}^{2}}}}\] which is wrong. So, we have to remember a few standard derivatives and we have to be very careful while solving the question.
Complete step-by-step answer:
In this question, we have been asked to find the value of \[{{f}^{'}}\left( -\dfrac{1}{2} \right)\] where \[f\left( x \right)={{\sin }^{-1}}\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right)\]. To solve this question, we should know that the derivatives of \[f\left( g\left( x \right) \right),{{\sin }^{-1}}x,{{a}^{x}},\dfrac{u}{v}\] type function is given by \[\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={{f}^{'}}\left( g\left( x \right) \right).{{g}^{'}}\left( x \right),\dfrac{d}{dx}{{\sin }^{-1}}x=\dfrac{1}{\sqrt{1-{{x}^{2}}}}\text{,}\dfrac{d}{dx}\left( {{a}^{x}} \right)={{a}^{x}}\log a\text{ and }\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}\]
Now, to solve this question, we will first find the derivative of \[{{\sin }^{-1}}\] then \[\dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}}\] and then that of \[{{3}^{x}}\text{ and }{{9}^{x}}\]. So, we can write
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{d}{dx}\left( {{\sin }^{-1}}\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right) \right)\]
Here, we can see that the function is of the form f (g (x)) where \[g\left( x \right)=\dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}}\]. So, we can apply the chain rule. Now, we know that \[\dfrac{d}{dx}{{\sin }^{-1}}x=\dfrac{1}{\sqrt{1-{{x}^{2}}}}\]. So, for \[x=\dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}}\], we get,
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{1}{\sqrt{1-{{\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right)}^{2}}}}.\dfrac{d}{dx}\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right)\]
Now, we will simplify it. So, we get,
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{1}{\sqrt{\dfrac{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}{{{\left( 1+{{9}^{x}} \right)}^{2}}}}}.\dfrac{d}{dx}\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right)\]
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}}}{\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}.\dfrac{d}{dx}\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right)\]
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{1+{{9}^{x}}}{\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}.\dfrac{d}{dx}\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right)\]
Now, we know using quotient rule that \[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}\]. So, we can write \[\dfrac{d}{dx}\left( f\left( x \right) \right)\] for \[u=2\times {{3}^{x}}\text{ and }v=1+{{9}^{x}}\], we get,
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{\left( 1+{{9}^{x}} \right)}{\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}.\dfrac{\left( 1+{{9}^{x}} \right)\dfrac{d}{dx}\left( 2\times {{3}^{x}} \right)-\left( 2\times {{3}^{x}} \right)\dfrac{d}{dx}\left( 1+{{9}^{x}} \right)}{{{\left( 1+{{9}^{x}} \right)}^{2}}}\]
Now, we know that \[\dfrac{d}{dx}{{a}^{x}}={{a}^{x}}\log a\]. So, we can write \[\dfrac{d}{dx}\left( 2\times {{3}^{x}} \right)=2\times {{3}^{x}}\log 3\] and \[\dfrac{d}{dx}\left( 1+{{9}^{x}} \right)={{9}^{x}}\log 9\]. So, we get,
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{\left( 1+{{9}^{x}} \right)}{\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}.\dfrac{\left( 1+{{9}^{x}} \right)\left( 2\times {{3}^{x}}\times \log 3 \right)-\left( 2\times {{3}^{x}} \right)\left( {{9}^{x}}\log 9 \right)}{{{\left( 1+{{9}^{x}} \right)}^{2}}}\]
Now, we will simplify it further, we get,
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{2\times {{3}^{x}}\times \log 3+{{9}^{x}}\times 2\times {{3}^{x}}\log 3-2\times {{3}^{x}}\times {{9}^{x}}\log 9}{\left( 1+{{9}^{x}} \right)\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}\]
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{2\times {{3}^{x}}\times \log 3+{{9}^{x}}\times 2\times {{3}^{x}}\log 3-2\times {{3}^{x}}\times {{9}^{x}}\log {{3}^{2}}}{\left( 1+{{9}^{x}} \right)\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}\]
Now, we know that \[\log {{a}^{n}}=n\log a\]. So, we can write \[\log {{3}^{2}}=2\log 3\]. So, we get,
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{2\times {{3}^{x}}\times \log 3+{{9}^{x}}\times 2\times {{3}^{x}}\log 3-4\times {{3}^{x}}\times {{9}^{x}}\log 3}{\left( 1+{{9}^{x}} \right)\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}\]
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{2\times {{3}^{x}}\times \log 3+\left( {{3}^{x}}\times {{9}^{x}}\log 3 \right)\times \left( 2-4 \right)}{\left( 1+{{9}^{x}} \right)\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}\]
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{2\times {{3}^{x}}\times \log 3-2\times {{3}^{x}}\times {{9}^{x}}\log 3}{\left( 1+{{9}^{x}} \right)\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}\]
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{2\times {{3}^{x}}\times \log 3\left( 1-{{9}^{x}} \right)}{\left( 1+{{9}^{x}} \right)\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}\]
We know that \[\dfrac{d}{dx}\left( f\left( x \right) \right)={{f}^{'}}\left( x \right)\]. So, we can write,
\[{{f}^{'}}\left( x \right)=\dfrac{2\times {{3}^{x}}\times \left( 1-{{9}^{x}} \right)\times \log 3}{\left( 1+{{9}^{x}} \right)\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}\]
Now, we will put \[x=\dfrac{-1}{2}\] to get the value of \[{{f}^{'}}\left( \dfrac{-1}{2} \right)\]. So, we get,
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{2\times {{3}^{\dfrac{-1}{2}}}\times \left( 1-{{9}^{\dfrac{-1}{2}}} \right)\times \log 3}{\left( 1+{{9}^{\dfrac{-1}{2}}} \right)\sqrt{{{\left( 1+{{9}^{\dfrac{-1}{2}}} \right)}^{2}}-{{\left( 2\times {{3}^{\dfrac{-1}{2}}} \right)}^{2}}}}\]
Now, we know that \[\sqrt{9}=3\]. So, we get,
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{\dfrac{2}{\sqrt{3}}\left( 1-\dfrac{1}{3} \right)\log 3}{\left( 1+\dfrac{1}{3} \right)\sqrt{{{\left( 1+\dfrac{1}{3} \right)}^{2}}-\dfrac{4}{3}}}\]
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{4\log 3}{3\sqrt{3}\left[ \dfrac{4}{3}\sqrt{\dfrac{16}{9}-\dfrac{4}{3}} \right]}\]
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{4\log 3}{3\sqrt{3}\left[ \dfrac{4}{3}\sqrt{\dfrac{16-12}{9}} \right]}\]
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{4\log 3}{3\sqrt{3}\times \dfrac{4}{3}\times \dfrac{2}{3}}\]
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{4\times 3\times 3\times \log 3}{4\times 2\times 3\sqrt{3}}\]
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{\sqrt{3}}{2}\log 3\]
Now, we know that \[3={{\left( \sqrt{3} \right)}^{2}}\]. So, we can write
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{\sqrt{3}}{2}\log {{\left( \sqrt{3} \right)}^{2}}\]
And we know that \[\log {{m}^{n}}=n\log m\]. So, we get,
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{\sqrt{3}}{2}\left( 2\log \sqrt{3} \right)\]
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\sqrt{3}\log \sqrt{3}\]
Hence, we can say that, for \[f\left( x \right)={{\sin }^{-1}}\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right)\], we get \[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\sqrt{3}{{\log }_{e}}\sqrt{3}\]
Therefore, option (d) is the right answer.
Note: While solving this question, there are high chances of calculation mistakes because it contains a lot of calculations. Also, we need to remember that derivative of \[{{\sin }^{-1}}x=\dfrac{1}{\sqrt{1-{{x}^{2}}}}\]. Sometimes in a hurry, we end up writing it as \[\dfrac{1}{\sqrt{{{x}^{2}}-1}}\text{ or }\dfrac{-1}{\sqrt{1-{{x}^{2}}}}\] which is wrong. So, we have to remember a few standard derivatives and we have to be very careful while solving the question.
Recently Updated Pages
JEE Main 2023 (January 30th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key

JEE Main 2023 (April 6th Shift 2) Maths Question Paper with Answer Key

Classification of Elements and Periodicity in Properties Chapter For JEE Main Chemistry

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

JEE Main 2023 (January 24th Shift 2) Chemistry Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main Login 2045: Step-by-Step Instructions and Details

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Ideal and Non-Ideal Solutions Raoult's Law - JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation
